HP 71600 Series of Gbit/s Testers

Installation and Verification Manual

SERIAL NUMBERS

This manual applies directly to:

HP 70841A 0.1-3 Gbit/s Pattern Generator with serial number(s) prefixed 3017U.

HP 70842A 0.1-3 Gbit/s Error Detector with serial number(s) prefixed 3017U.

HP 70845A 0.05-1 Gbit/s Pattern Generator with serial number(s) prefixed 3027U.

HP 70846A 0.05-1 Gbit/s Error Detector with serial number(s) prefixed 3027U.

For additional important information about serial numbers, see SERIAL NUMBER INFORMATION in Chapter 1.

Serial number information for other elements in the system is contained in the following manuals:

Display Mainframe see HP 70004A Installation and Verification Manual
 see HP 70001A Installation and Verification Manual

Clock Source

- see HP $70320\mathrm{A}/70322\mathrm{A}$ Operating/Programming/Calibration

Manuals

© Copyright (1990), Hewlett-Packard Company

HP Part No. 71600-90001 Microfiche Part No. 71600-90026 Printed in U.K. October 1990

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instuctions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer. Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environment specifications for the products, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HE SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packara products.

For any assistance, contact your Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

WARNING

READ THE FOLLOWING NOTES BEFORE INSTALLING OR SERVICING ANY INSTRUMENT.

- 1. IF THIS INSTRUMENT IS TO BE ENERGISED VIA AN AUTO-TRANSFORMER MAKE SURE THAT THE COMMON TERMINAL OF THE AUTO-TRANSFORMER IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SOURCE.
- 2. THE INSTRUMENT MUST ONLY BE USED WITH THE MAINS CABLE PROVIDED. IF THIS IS NOT SUITABLE, CONTACT YOUR NEAREST HP SERVICE OFFICE. THE MAINS PLUG SHALL ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT A PROTECTIVE CONDUCTOR (GROUNDING).
- 3. THE SERVICE INFORMATION FOUND IN THIS MANUAL IS OFTEN USED WITH POWER SUPPLIED TO AND PROTECTIVE COVERS REMOVED FROM THE INSTRUMENT. ENERGY AVAILABLE AT MANY POINTS MAY, IF CONTACTED, RESULT IN PERSONAL INJURY.
- 4. BEFORE SWITCHING ON THIS INSTRUMENT:
 - (a) Make sure the instrument input voltage selector is set to the voltage of the power source.
 - (b) Ensure that all devices connected to this instrument are connected to the protective (earth) ground.
 - (c) Ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient).
 - (d) Check correct type and rating of the instrument fuse(s).

5. SERVICING INFORMATION:

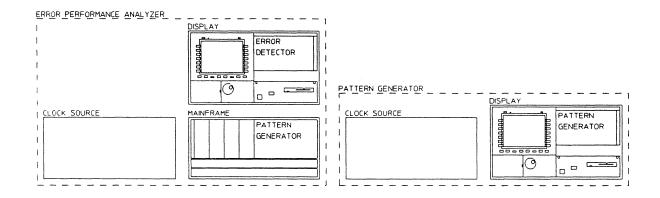
- (a) This manual contains information, cautions and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition. Service and adjustments should be performed only by qualified service personnel.
- (b) Any adjustment, maintenance and repair of the opened instrument under voltage should be avoided as much as possible and, when unavoidable, should be carried out only by a skilled person who is aware of the hazard involved.
- (c) Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
- (d) Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

HP 71600 Series Overview

Introduction

The HP 71600 Series can be configured into one of the following:

HP 71601A 0.05-1 Gbit/s Error Performance Analyzer


HP 71602A 0.05-1 Gbit/s Pattern Generator

HP 71603A 0.1-3 Gbit/s Error Performance Analyzer

HP 71604A 0.1-3 Gbit/s Pattern Generator

Systems Overview

The basic systems are shown in the following illustrations:

The elements which make up your system are identified by product number in the following table:

Element	Error Performance Analyzer		Pattern Generator	
	HP 71601A HP 71603A		HP 71602A	HP 71604A
	(.05-1 Gbit/s)	(0.1-3 Gbit/s)	(.05-1 Gbit/s)	(0.1-3 Gbit/s)
Display	HP 70004A	HP 70004A	HP 70004A	HP 70004A
Mainframe	HP 70001A	HP 70001A	-	-
Pattern Generator	HP 70845A	HP 70841A	HP 70845A	HP 70841A
Error Detector	HP 70846A	HP 70842A	-	-
*Clock Source	HP 70320A	HP 70322A	HP 70320A	HP 70322A

^{*} Clock Source is not supplied if Option 100 is ordered with your system.

Documentation Overview

The manuals which are supplied with each system are listed in the following table:

Element	Product Manual Number		HP Part Number	Comments	
System HP 71601A I		Installation/Verification 71600-9000		These manuals are	
	HP 71602A	Operating	71600-90000	supplied with all systems.	
	HP 71603A	Programming	71600-90003		
	HP 71604A				
Display	HP 70004A	Operation	70004-90007	These manuals are supplied	
		Installation/Verification 70004-90005 with all systems.		with all systems.	
Mainframe HP 70001A		Installation/Verification	70001-90021	This manual is supplied with all systems operating as Error Performance Analyzers.	
*Clock Source HP 70320A		Operating/Programming/ Calibrating	08644-90047	This manual is supplied with systems operating at 0.05-1 Gbit/s.	
	HP 70322A	Operating/Programming/ Calibrating	08665-90001	This manual is supplied with systems operating at	
				0.1-3 Gbit/s.	

Service manuals covering the elements in your system are listed in the following table:

Element	Product Number	Service Manual HP Part Number	Comments
System	HP 71601A	71600-90002	This manual is required for all systems.
	HP 71602A		
	HP 71603A		
	HP 71604A		
Display	HP 70004A	70004-90009	This manual is required for all systems.
Mainframe	HP 70001A	70001-90044	This is manual required for systems
			operating as an Error Performance
			Analyzer.
*01 1 0	HD 700004	00045 00104	
*Clock Source	HP 70320A	08645-90104	This manual is required for all systems.
	HP 70322A		

^{*} Clock Source documentation is not supplied if Option 100 is ordered with your system.

HP 71600 Series Installation and Verification Manual

This manual is shipped from the factory with only the system installation and verification information.

When the Display and Mainframe Installation and Verification Manuals are unpacked they should be inserted into the *HP 71600 Series Installation and Verification Manual*, (all installation and verification information is then contained within the one binder).

User Tasks

Listed below are typical user tasks and chapter references:

Task	Chapter
Getting the system ready for use.	Installation 2
Identifying error conditions and messages	Troubleshooting 5
Verifying the system meets specification.	Performance Tests 4
Understanding a master/slave Modular Measurement System.	HP 71600 Series (MMS) 6
Understanding a master/master Modular Measurement System.	Appendix A
Controlling the system remotely through HP-IB	HP-IB 7

Contents

1.	General Information	
	Introduction	1-1
	Options	1-2
	Accessories Supplied	1-2
	Serial Number Information	1-2
	Returning Modules for Service	1-3
	Packaging Requirements	1-3
	Preparing a Module for Shipping	1-3
	Precautions	1-5
	ESD Precautions	1-5
	Static-safe Workstation	1-5
	Static-safe Accessories	1-6
	Display Cleaning	1-6
	Display Cleaning	10
2.	Installation	
	Preparation for Use	2-2
	Initial Inspection	2-2
	Operating Requirements	2-2
	Operating and Storage Environment	2-2
	Physical Specifications	2-3
	Power Requirements	2-3
	Power Cables	2-4
	Line Voltage Selection	2-4
	Display (HP 70004A) Line Voltage Selector	2-4
	Clock Source (HP 70320A or HP 70322A) Line Voltage Selector	2-5
	Mainframe (HP 70001A) Line Voltage Selector	2-6
	Line Fuses	2-7
	Accessing the Display (HP 70004A) and Mainframe (HP 70001A) Fuses .	2-7
	Accessing the Clock Source (HP 70320A or HP 70322A) Fuse	2-7
	Fuse Ratings	2-7
	HP-MSIB Address Switches	2-8
	Factory Preset HP-MSIB Addresses	2-8
	Error Detector Module Address Switches	2-8
	Pattern Generator Module Address Switches	2-9
		2-10
		2-10
	- ·	2-11
		2-11
		2-11
		2-11
		2-13
	·	2-14

	System Verification	2-16
	Error Performance Analyzer System Verification	2-16
	Pattern Generator System Verification	2-10
	Selftest at Power-on	2-18
	Installing/Removing Modules	2-20 2-21
	Installing a Module into a Display	
	Installing a Module into a Display	2-21
	Installing a Module into a Mainframe	2-22
3.	Specification	
	Introduction	3-1
4.	Performance Tests	
	Introduction	4-1
	Module Verification	4-1
	System Verification	4-1
	Test Levels	
	Test Levels	4-1
	Calibration Cycle	4-2
	Warm-up Time	4-2
	Recommended Test Equipment	4-3
	Operational Verification	4-4
	Pattern Generator Performance Tests	4-4
	Test Frequencies	4-4
	Clock Source	4-5
	Pattern Generator Module Preliminary Setup	4-5
	Clock Input Levels	4-6
	Clock Output Waveforms	4-10
	Data Output Waveforms	4-16
	Trigger Output Waveform and Data Output Intrinsic Jitter	4-22
	PRBS 2 ⁿ -1 Pattern Length	4-22
	PRBS 2 ⁿ Variable Mark Density	
	DDDC 2° n Zone Cubetitution	4-30
	PRBS 2^n Zero Substitution	4-34
	Error Add	4-38
	User Selectable Patterns and Memory Backup	4-40
	Auxiliary Input Test	4-46
	Error Detector Performance Tests	4-50
	Test Frequencies	4-50
	Error Detector Module Preliminary Setup (Master/Slave)	4-51
	Preliminary Setup (Master/Master)	4-52
	Clock Input Levels	4-54
	PRBS 2 ⁿ -1 Pattern Synchronization, Error Detect and Audible Indicator .	4-57
	PRBS 2 ⁿ Pattern Synchronization, Error Detect and Memory Back up	4-61
	PRBS 2 ⁿ with Variable Mark Density	4-65
	PRBS 2 n Pattern with Zero Substitution	
		4-68
	User Selectable Pattern Synchronization and Error Detect	4-71
	Data Input Range (Automatic 0/1 Threshold)	4-74
	Error Output Waveform and Data Input Delay	4-78
	Data Input Invert	4-82
	Pattern Synchronization Threshold	4-85

5 .	Troubleshooting	
	Entry Chart	5-1
	System Indicators	5-2
	Error Indicators	5-3
	VOLT/TEMP Troubleshooting	5-4
	CURRENT Troubleshooting	5-5
		5-6
		5-8
		5-8
		16
		16
		16
	211211 2000 210111111111111111111111111	17
c	HP 71600 Series Modular Measurement System	
6.		3-2
		3-2 3-2
		5-4 5-4
		5-4 5-4
		- 5
		3-5
		6-5
		6-6
		6-7
	0	8-6
	HP 71600 Series HP-MSIB Cabling	6-8
7.	Hewlett-Packard Interface Bus (HP-IB)	
	Preset Addresses	7-1
	Changing Addresses	7-2
		7-2
	Cabling (HP-IB)	7-2
	Connecting Your System to an HP-IB Controller	7-3
		7-3
A.	Master/Master Configuration	
		\ -1
		1 -1
	,	1-2
		1- 3
	HP 71600 Series in a Master/Master Configuration	1-3
В.	Instrument Operation	
	Introduction	3-:
		B-2
		B-2
		B-2
		3-;
	1 0	3-3
		•

General Information

Introduction

This chapter contains general information about the HP 71600 Series System and is divided into the following sections:

Options Lists all the options available with your system.

Accessories Supplied Lists the accessories supplied with your system.

Serial Number Explains the Hewlett-Packard serial numbering system.

Information

Returning Modules for Contains information on how to return a module to

Service Hewlett-Packard for service.

Precautions Highlights electrostatic discharge procedures and accessories

available. This section also contains information on cleaning the

display.

Options

The options which may have been ordered with your system are listed below:

Option 100 Delete the Clock Source.

Option 200 Delete the HP 15680A RF Accessory Kit.

Option 908 Rack mount flanges for systems without handles fitted.

Option 910 Extra set of manuals - provides an additional set of installation/verification

and operating manuals for your system.

Option 913 Rack mount flanges for systems with handles fitted.

Option + W30 Two years additional hardware support beyond the standard one-year warranty.

Accessories Supplied

The accessories supplied with your system are listed below:

- HP 15680A RF Accessory Kit
- HP-MSIB cables:

Three cables supplied with the Error Performance Analyzer system Two cables supplied with the Pattern Generator system

■ Line power cables:

Three cables supplied with the Error Performance Analyzer system Two cables supplied with the Pattern Generator system

- 8 mm hex-ball driver
- Four 1/8 cosmetic panels (HP 5061-9006) required for the Mainframe in the Error Performance Analyzer system
- HP 11500B N-type cable (not supplied when Option 100 is ordered)
- Front Handles for the Clock Source (HP 70320A/22A)

Serial Number Information

Attached to each element in your system is a serial number plate. A typical serial number is in the form XXXXUXXXXX. It is in two parts; the first four digits and the letter are the serial prefix and the last five are the suffix, the letter designates the country of origin - U is the United Kingdom. The prefix is the same for identical elements, it only changes when a change is made to an element in your system. The suffix however, is assigned sequentially and is different for each element. The contents of this manual apply to the elements with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

A system manufactured after the printing of this manual may have a number prefix that is not listed on the title page. The unlisted serial number prefix indicates the system is different from those described in this manual. The manual for this new element is accompanied by a *Manual Changes* supplement. This supplement contains *change information* that explains how to adapt the manual to the new element.

In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complementary copies of the supplement are available from Hewlett-Packard. For information concerning a serial number prefix that is not listed on the Manual Changes supplement, contact your nearest Hewlett-Packard office.

Returning Modules for Service

This section explains how you return a module to Hewlett-Packard for servicing.

Packaging Requirements

Instruments and modules can be damaged as a result of using packaging materials other than those specified. Never use styrene pellets as packaging material. They do not adequately cushion the instrument nor prevent it from shifting in the carton. They also cause instrument damage by generating static electricity.

Preparing a Module for Shipping

- 1. Fill out a blue repair tag (located at the end of this manual) and attach it to the instrument or module. Include any error messages or specific performance data related to the problem. If a blue tag is not available, the following information should be noted and sent with the module or instrument:
 - Type of service required.
 - Description of the problem.
 - Whether problem is constant or intermittent.
 - Name and phone number of technical contact person.
 - Return address.
 - Model number of returned module or instrument.
 - Full serial number or returned module or instrument.
 - List of any accessories returned with the module or instrument.
- 2. Pack the module or instrument in the appropriate packaging materials. Original shipping or equivalent materials should be used. If the original or equivalent material cannot be obtained, follow the instructions below:

Caution

Inappropriate packaging of the instrument may result in damage to the instrument during transit.

- Wrap the instrument in anti-static plastic to reduce the possibility of damage caused by
- Use a double-walled, corrugated cardboard carton of 159 kg (350 lb) test strength.

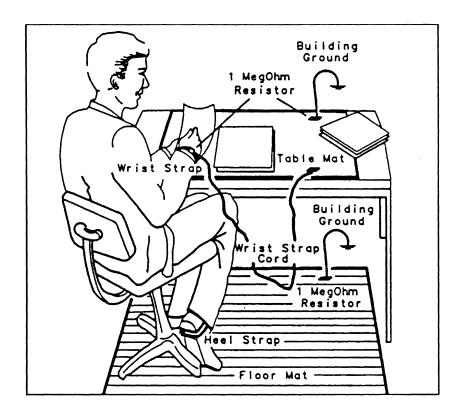
Caution

If you are shipping a complete system, remove the module(s) from Display and Mainframe, individually pack each element, then ship them to Hewlett-Packard.

- The carton must be large enough to allow 3- to 4-inches on all sides of the instrument for packing material and strong enough to accommodate the weight of the instrument.
- Surround the instrument with 3- to 4-inches of packing material, to protect the instrument and prevent it from moving in the carton.
- If packing foam is not available, the best alternative is S.D.-240 Air CapTM from Sealed Air Corporation (Commerce, California 90001). Air CapTM looks like a plastic sheet filled with air bubbles.
- Use the pink (anti-static) Air CapTM to reduce static electricity. Wrapping the instrument several times in this material will protect the instrument and prevent it from moving in the carton.
- 3. Seal the carton with strong nylon adhesive tape.
- 4. Mark the carton FRAGILE, HANDLE WITH CARE.
- 5. Retain copies of all shipping papers.

Precautions

ESD Precautions


Electrostatic discharge (ESD) can damage or destroy electronic components. All work on electronic assemblies should be performed at a static-safe workstation.

Static-safe Workstation

A typical static-safe workstation is illustrated in the following diagram. There are two types of ESD protection:

- Wrist-strap (with > 1 M Ω isolation to ground) with table-mat.
- Heel-strap (with > 1 M Ω isolation to ground) with conductive floor-mat.

These two types must be used together to ensure adequate ESD protection. Isolation to ground must be provided for personnel protection.

Static-safe Accessories

The following table lists the accessories that may be ordered through any Hewlett-Packard sales and service office.

HP Part Number	Description	
9300-0797	3M static control mat 0.6 m x 1.2 m (2 ft x 4 ft) and 4.6 m (15 ft) of ground wire. (The wrist-strap and wrist-strap cord are not included. They must be ordered separately.)	
9300-0980	Wrist-strap cord 1.5 m (5 ft).	
9300-1383	Wrist-strap, color black, stainless steel, has four adjustable links and a 7 mm post-type connection.	
9300-1169	ESD heel-strap (reusable 6- to 12- months).	
*92175A	Black, hard surface, static control mat, 1.2 m x 1.5 m (4 ft x 5 ft)	
*92175B	Brown, soft surface, static control mat, 1.2 m x 2.4 m (4 ft x 8 ft)	
*92175C	Small, black, hard surface, static control mat, 0.9 m x 1.2 m (3 ft x 4 ft)	
*92175T	Table-top static control mat, 58 cm x 76 cm (23 in x 30 in)	
*92176A	Natural color anti-static carpet, 1.2 m x 1.8 m (4 ft x 6 ft)	
*92176B	Natural color anti-static carpet, 1.2 m x 2.4 m (4 ft x 8 ft)	
*92176C	Russet color anti-static carpet, 1.2 m x 1.8 m (4 ft x 6 ft)	
*92176D	Russet color anti-static carpet, 1.2 m x 2.4 m (4 ft x 8 ft)	

^{*}Can also be ordered by calling HP DIRECT Phone (800) 538 8787.

Display Cleaning

To avoid damaging the coating on the display, use a thin-film cleaner such as Hewlett-Packard Video Clean Kit (HP part number 92193). The kit includes an non-abrasive cleaning cloth.

Hand and laboratory paper towels are abrasive, if these are used they may Caution damage the coating on the display.

2. Installation

Installation

Modules

This chapter enables you to install your system ready for use. The information is presented under the following headings:

Preparation for Use	Provides information you should read before you install your system. It contains information on initial inspection, power requirements, address switches and rack mount kits.
System Installation	Shows you how to install your system. As you progress through the procedure, you will be directed to other relevant information.
System Verification	Describes how you power-on and verify correct system installation, and directs you to troubleshooting (if there are any problems).
Selftest at Power-on	Details the instrument status during selftest at power-on.
Installing/Removing	Describes how you install modules into a Display and Mainframe.

Preparation for Use

This section should be read before you install your system. It contains the following:

- Initial Inspection
- Operating Requirements
- Line Voltage Selection
- Line Fuses
- Power Cables
- HP-MSIB Address Switches
- HP-IB Address Switches
- Bench Operation
- Rack Mount Kits

Initial Inspection

Warning

To avoid hazardous electrical shock, do not perform electrical tests when there are signs of shipping damage to any portion of the outer enclosure (covers, panels, meters).

Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the elements in your system have been checked both mechanically and electrically. Procedures for checking the electrical operation are given in chapter 4 of this manual.

If any element in your system appears damaged or is defective, contact the nearest Hewlett-Packard service office. Hewlett-Packard will arrange for repair or replacement of the equipment without waiting for a claim settlement. Retain the shipping materials for the carrier to inspect.

Mainframes and stand-alone instruments such as the HP 70004A Display, are shipped with the front handles attached.

Undamaged shipping materials should be kept. Original HP or equivalent shipping materials are required for system or module re-shipment, as substandard packaging may result in damage. Refer to *Returning Modules for Service* in chapter 1 for information on re-shipment.

Operating Requirements

Operating and Storage Environment

The system may be operated in temperatures from 0 °C to +45 °C. For storage, the temperature range is -40 °C to +65 °C.

The system should be protected against temperature extremes which may cause condensation within the elements in your system.

Physical Specifications

The physical dimensions and weight of each element in your system are contained in chapter 3 Specifications.

Power Requirements

The line voltage requirements for the Display, Mainframe and Clock Source are as follows:

115 V line operation: 90 to 132 V ac, 47 to 66 Hz 230 V line operation: 198 to 264 V ac, 47 to 66 Hz

The maximum power consumption is as follows:

Display

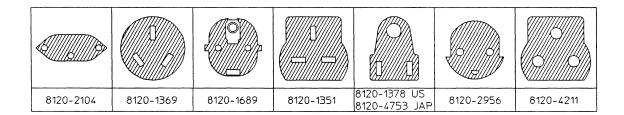
260 W maximum, 350 VA maximum

Mainframe

310 W maximum, 570 VA maximum

Clock Source

Refer to the Operating/Programming/Calibrating manual.


Warning

Before turning the system on, make sure it is grounded through the protective conductor of the power cable to a socket outlet with protective earth contact. Any interruption of the protective (grounding) conductor inside or outside the instrument, or disconnection of the protective earth terminal, can result in personal injury.

Power Cables

The Display, Mainframe and Clock Source are equipped with a three-wire power cable. When connected to a properly grounded power outlet, this cable grounds the instrument case. The power cable shipped with each instrument depends on the country of destination. The plug configuration and the power cable part numbers are listed below. If the appropriate power cable(s) are not supplied with your system or are damaged, notify the nearest Hewlett-Packard sales and service office and replacement(s) will be provided.

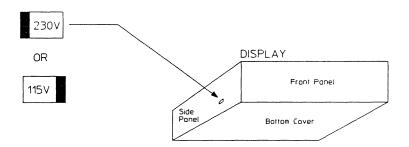
The color code used in each power cable is given below:

Line Brown
Neutral Blue
Ground Green/yellow

Line Voltage Selection

Display (HP 70004A) Line Voltage Selector

Caution


Before you connect the power cable to the Display, check that the LINE VOLTAGE SELECTOR switch is set for the correct line voltage source.

If the wrong voltage is selected, one of the following may happen:

If 115 V line operation is selected and you connect to a 230 V ac line power source, the fuse may blow.

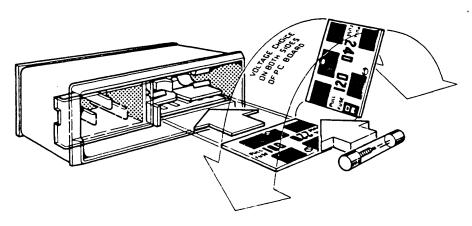
If 230 V line operation is selected and you connect to a 115 V ac line power source, the instrument will not power-on correctly.

The LINE VOLTAGE SELECTOR slide switch is located through a slot in the left side-panel.

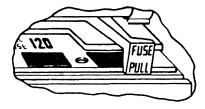
Clock Source (HP 70320A or HP 70322A) Line Voltage Selector

Caution

Before you connect the power cable to the Clock Source, check that the LINE VOLTAGE SELECTOR is set for the correct line voltage source.


If the wrong voltage is selected, one of the following may happen:

If 115 V line operation is selected and you connect to a 230 V ac line power source, the fuse may blow.


If 230 V line operation is selected and you connect to a 115 V ac line power source, the instrument will not power-on correctly.

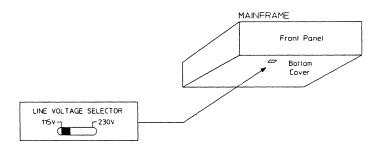
The LINE VOLTAGE SELECTOR switch is located in the line-module housing on the rear panel. To change the voltage, use the following procedure:

- 1. Open cover door, pull the FUSE PULL lever and rotate to the left. Remove the fuse.
- 2. Remove the LINE VOLTAGE SELECTOR card. Position the card so that the required line voltage is visible when the card is firmly pushed into the slot.
- 3. Rotate the fuse pull lever to its normal position. Insert a fuse of the correct rating into the holder. Close the cover door.

Operating voltage is shown in module window.

Mainframe (HP 70001A) Line Voltage Selector

Caution

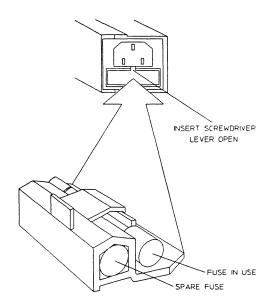

Before you connect the power cable to the Mainframe, check that the LINE VOLTAGE SELECTOR switch is set for the correct line voltage source.

If the wrong voltage is selected, one of the following may happen:

If 115 V line operation is selected and you connect to a 230 V ac line power source, the fuse may blow.

If 230 V line operation is selected and you connect to a 115 V ac line power source, the instrument will not power-on correctly.

The LINE VOLTAGE SELECTOR slide switch is located through a slot in the bottom panel (the switch is set for 115 V operation in the above diagram).


Line Fuses

The line fuses of the Display, Mainframe and Clock Source are located in the line-module housings on the rear panel.

Accessing the Display (HP 70004A) and Mainframe (HP 70001A) Fuses

The Display and Mainframe use similar line-module housings (see the following diagram). To access the fuses:

- 1. Ensure no power cable is connected to the line-module housing.
- 2. Use a screwdriver to lever open the fuse holder. A spare line fuse is located inside the fuse holder.

Accessing the Clock Source (HP 70320A or HP 70322A) Fuse

The line fuse is located in the line-module housing. To access the fuse, refer to step 1 and the diagram in the Clock Source LINE VOLTAGE SELECTOR procedure on page 1-6.

Fuse Ratings

The fuse ratings and the part numbers for 115 V ac and 230 V ac operation are listed below:

The Display and Mainframe fuse rating are 6.3 A, 250 V (HP 2110-0703) for both 115 and 230 V ac operation.

The Clock Source fuse ratings are 4 A, 250 V (HP 2110-0055) for 115 V ac operation and 2.5 A, 250 V (HP 2110-0083) for 230 V ac operation.

HP-MSIB Address Switches

The HP-MSIB address switches are factory preset to configure your Error Performance Analyzer or Pattern Generator as a master/slave Modular Measurement System (MMS).

If you want to change the master/slave addressing or want to change to master/master configuration, ensure you are fully aware of the HP-MSIB address protocol, see chapter 6.

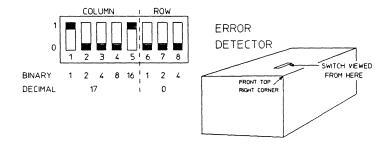
In an Error Performance Analyzer system the Error Detector master module controls the slave Pattern Generator module and the Clock Source. The Pattern Generator module (a slave to the Error Detector) is a sub-master to the Clock Source. The Clock Source is controlled directly by the Pattern Generator, and indirectly by the Error Detector (through the Pattern Generator).

In a Pattern Generator system the master module is the Pattern Generator, it controls the slave Clock Source.

Factory Preset HP-MSIB Addresses

The factory preset HP-MSIB addresses (row,column) are listed below:

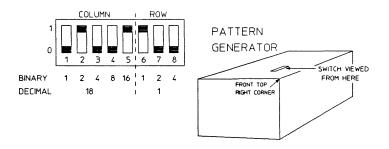
Display : 0, 20 Error Detector : 0, 17*


Pattern Generator: 1, 18* (for the Error Performance Analyzer)

: 0, 18* (for the Pattern Generator system)

Clock Source : 2, 19

Error Detector Module Address Switches


These are accessed through a slot on top of the module. The factory preset settings are shown in the following diagram:

^{*} Column value defines the factory preset HP-IB addresses.

Pattern Generator Module Address Switches

These are accessed through a slot on top of the module. The factory preset settings for a Pattern Generator module in an Error Performance Analyzer system are shown in the following diagram:

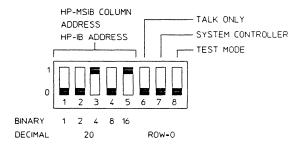


Note

The factory preset settings for a Pattern Generator module in a Pattern Generator system are (0, 18).

Clock Source Address Switches

The factory preset switch settings are shown in the following diagram:


The above switch refers to the HP 70322A Clock Source.

To access the HP-MSIB switches:

- 1. Remove the two side handles, using a large posi-driver.
- 2. Remove the two top rear feet, using a small posi-driver.
- 3. Remove the two top roundhead screws, using a size T-15 torque-driver (part number HP 8710-1625 which is part of the Torque-driver Kit HP 8710-1543).
- 4. Remove the 5 countersunk screws and metal strip on each side of the top cover, using a size T-10 torque-driver (part number HP 8710-1624).
- 5. Unscrew the rear central countersunk screw, using a large posi-driver.
- 6. Slide the top cover to the rear to access the address switches.

Display Address Switches

These are located on the rear panel of the HP 70004A Display, it has no row switches (it defaults to row 0) - only column switches (the factory preset settings are shown in the following diagram):

HP-IB Address Switches

The HP-MSIB address switches in the Error Detector and Pattern Generator modules also act as HP-IB switches. If you want your system to communicate over the HP-IB:

The row switches must be set to θ .

The column switches define the HP-IB address.

If you want to change an HP-IB address (ie, use an address that is different from that defined by the *column* switch settings), it is recommended that you use the Display *HP-IB Address* function, see the *HP 71600 Series Operating Manual*.

Caution

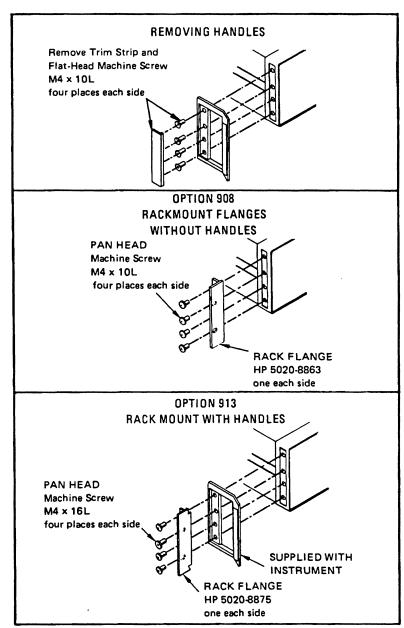
It is not recommended that you change the HP-IB address using the HP-MSIB/HP-IB switches, as these also change the HP-MSIB address. If the HP-MSIB address protocol is violated your system will fail to operate.

Factory Preset HP-IB Addresses

The Error Detector HP-IB address is factory preset to 17 (column part of HP-MSIB switch setting).

The Pattern Generator HP-IB address is factory preset to 18.

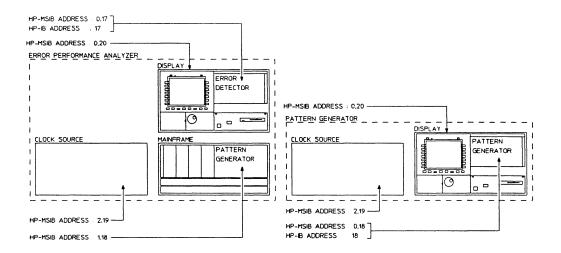
Bench Operation


Plastic feet are included with Mainframes and stand-alone instruments to provide bench operation convenience. The plastic feet are self-aligning when systems are to be stacked.

Rack Mount Installation

Front handles must be removed when fitting the system rack mount options.

The rack mounts that are available are illustrated in the diagram on the page opposite. Angled brackets (HP 12679C) may be ordered to provide additional rear or side support for the rack mounted instruments. The table below lists the rack mount kit part numbers.


Device	Rack Mount Kit		
	Option 908	Option 913	
Display	HP 5062-3979	HP 5062-3985	
Mainframe	HP 5062-3978	HP 5062-3984	
Clock Source	HP 5062-3978	HP 5062-3984	

NOTE: LEFT FRONT IS SHOWN IN EACH EXAMPLE.

System Installation

Your HP 71600 Series can be installed to operate as an Error Performance Analyzer or as a Pattern Generator system.

Use the following table to identify the elements (by product number) which make up your system:

Element	Error Performance Analyzer		Pattern Generator	
	HP 71601A HP 71603A		HP 71602A	HP 71604A
	(.05-1 Gbit/s)	(0.1-3 Gbit/s)	(.05-1 Gbit/s)	(0.1-3 Gbit/s)
Display	HP 70004A	HP 70004A	HP 70004A	HP 70004A
Mainframe	HP 70001A	HP 70001A	-	-
Pattern Generator	HP 70845A	HP 70841A	HP 70845A	HP 70841A
Error Detector	HP 70846A	HP 70842A	-	_
*Clock Source	HP 70320A	HP 70322A	HP 70320A	HP 70322A

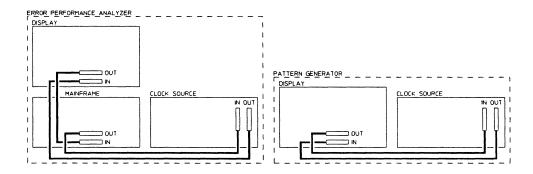
^{*} Clock Source is not supplied if Option 100 is ordered with your system.

Caution

Ensure that no power cables are connected. Also check that the LINE power switches are set to off.

Procedure

Caution


Ensure that the Display, Mainframe and Clock Source line voltage selector switches are set for the line voltage being used, also check that the ratings of the fuses, see pages 2-4 and 2-7.

- 1. Use the factory preset HP-MSIB and HP-IB addresses to install the Display, Module(s) and Clock Source as a master/slave system, see the diagram on the previous page and pages 2-8 to 2-11.
- 2. Install your module (the *Error Detector* for Error Performance Analyzers and the *Pattern Generator* for Pattern Generators) into the Display, see page 2-21.
- 3. If your system is an Error Performance Analyzer, install your Pattern Generator module into your Mainframe, see page 2-22.
- 4. Locate and secure the four 1/8 width cosmetic panels into the Mainframe.
- 5. Arrange the elements which make up your system for bench operation. The plastic feet on the Display, Mainframe and Clock Source are self aligning when systems are stacked. To rack mount your system, refer to *Rack Mount Installation*, see page 2-11.
- 6. Connect the HP-MSIB cables (to suit your system) as follows:

Caution

Your system must be powered down when connecting or disconnecting HP-MSIB cables.

The diagram shows the systems viewed from the rear.

Note

If the Clock Source is not supplied (Option 100), HP-MSIB cabling is between the Display and the Mainframe in an *Error Performance Analyzer* system, in a *Pattern Generator* system no external HP-MSIB cables are required.

7. Connect the CLOCK IN port of the Pattern Generator module to the RF OUTPUT of the Clock Source, using the accessory cable HP 11500B.

Note

The other front panel ports on the Pattern Generator and Error Detector modules are interconnected according to the application you want to undertake. Accessory Kit HP 15680A contains the necessary cables, adapters and 50Ω terminations. Unused ports must be terminated in 50Ω .

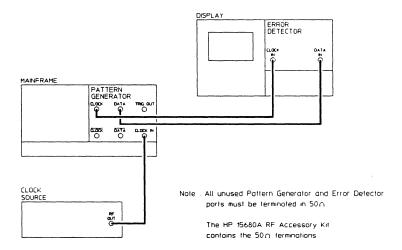
8. Connect the power cables to your system then connect the cables to the power outlets.

Three cables for Error Performance Analyzers. Two cables for Pattern Generators.

Caution

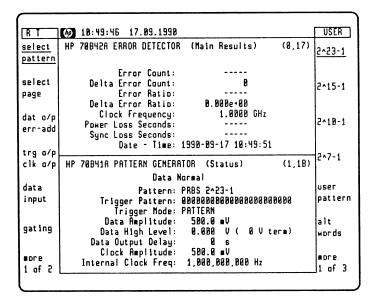
Check the power cables for damage before powering on your system, see the *Power Cables* on page 2-4.

Your system is now ready for System Verification, see page 2-16.


System Verification

This section contains procedures which will enable you to verify that your *Error Performance Analyzer* (see this page) or *Pattern Generator* system (see page 2-18) has been correctly installed.

Error Performance Analyzer System Verification

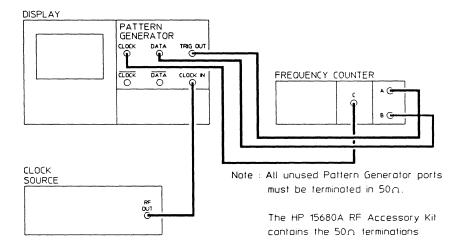

The Error Detector and Pattern Generator modules are connected back-to-back, then the system selftest and instrument preset parameters are used to verify correct installation. A description of what you will see during selftest is given in *System Selftest at Power-on*, see page 2-20 (since selftest takes only 15 seconds approximately to complete, you should read the description before powering on your system).

1. Interconnect the front panel ports as shown below, then prior to switching on your system, read Selftest at Power-on on page 2-20.

2. Switch on the three *Line* power switches (in any order) - wait approximately 15 seconds for selftest to end.

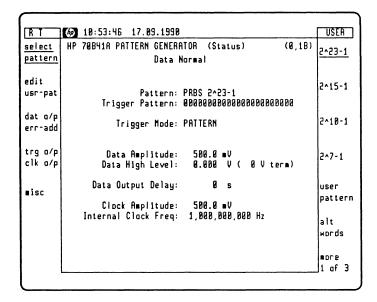
3. Press the Display (INST PRESET) key to set up the instrument preset parameters. The display should be as follows:

- 4. Check that the displayed clock frequency is 1 GHz and that both modules and the Clock Source ACT indicators are lit.
- 5. Press the Display DISPLAY key, the ACT indicators should extinguish and an A should appear at the top left of the display.
- 6. Press the Display MENU key, the A should disappear and the ACT indicators should light.
- 7. Press data input then more 1 of 2 (right menu). Press CLK-DAT ALIGN then wait a few seconds for the clock and data signals to align (see HP 71600 Series System Operating manual).
- 8. Press gating followed by RUN GATING. The GATING indicator on the Error Detector should light.
- 9. Check that the displayed error count is 0.


If the system does not operate as described (ie, selftest fails or error indicators are lit after selftest), go to the troubleshooting in chapter 5.

If there are no errors, the system is ready for use.

Pattern Generator System Verification


The Pattern Generator is connected to a counter, then the system selftest and instrument preset parameters are used to verify correct installation. A description of what you will see during selftest is given in *System Selftest at Power-on*, see page 2-20 (since selftest takes only 15 seconds approximately to complete, you should read the description before powering on your system).

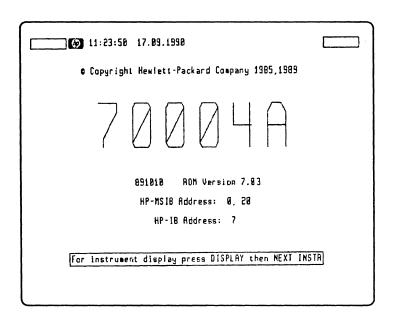
1. Interconnect the front panel ports as shown below, then prior to switching on your system, read Selftest at Power-on on page 2-20.

2. Switch on the two *Line* power switches (in any order) - wait approximately 15 seconds for selftest to end.

3. Press the Display (INST PRESET) key to set up the instrument preset parameters. The display should be as follows:

- 4. Check that the displayed clock frequency is 1 GHz and that the module ACT indicator is lit.
- 5. Set the clock frequency to 100 MHz (see HP 71600 System Operating Manual).
- 6. Press the Display DISPLAY key, the module ACT indicator should extinguish and an A should appear at the top left of the display.
- 7. Press the Display (MENU) key, the A should disappear and the ACT indicator should light.
- 8. Set the Frequency Counter Scale to Ratio B/A.
- 9. Check that the reading on Frequency Counter is 33554432 ± 0.1 . The Frequency Counter sensitivity may require adjustment to obtain a stable reading.
- 10. Set the Frequency Counter to Ratio C/A.
- 11. Press 2⁷-1.
- 12. Check that the reading on the Frequency Counter is 4064 ± 0.1 . The Frequency Counter sensitivity may require adjustment to obtain a stable reading.

If the system does not operate as described (ie, selftest fails or error indicators are lit after selftest), go to the troubleshooting in chapter 5.


If there are no errors, the system is ready for use.

Selftest at Power-on

At power on the Error Performance Analyzer system or Pattern Generator system performs a selftest (this takes approximately 15 seconds to complete), during this time the Display, Mainframe, Error Detector and Pattern Generator modules and Clock Source operate as follows:

Display

The display is blank for the first few seconds of the selftest, it then shows a multi-colored raster. The raster sweeps to the right, to show a blue back-ground. For the remainder of the selftest the display is as follows:

After selftest the Display may continue to display the above, or will display the module parameters present prior to the last power down.

Mainframe

All front panel indicators extinguish except for LINE.

Error Detector Module All front panel indicators are lit for approximately eight seconds then

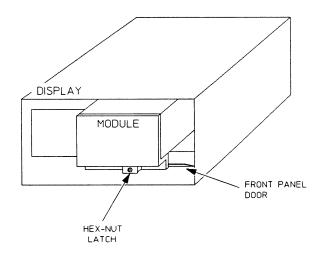
extinguished for the remainder of the selftest.

After selftest the ACT indicator should light.

Pattern Generator Module All front panel indicators are lit for approximately five seconds then

extinguished for the remainder of the selftest.

After selftest the ACT indicator should light.

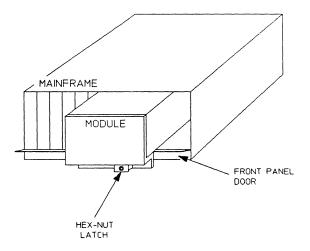

Clock Source

All HP-IB indicators are lit for the duration of the selftest.

Installing/Removing Modules

Use the following procedures to install your module into the Display or Mainframe. To remove a module, perform the steps in the reverse order.

Installing a Module into a Display



- 1. Open the front panel door then insert the module.
- 2. Secure the module by pressing against its front panel while tightening the hex-nut latch with an 8 mm hex-ball driver.

When removing an Error Detector module, disconnect any cable that may be connected to the rear panel ERROR OUT port.

When removing a Pattern Generator module, disconnect any cable that may be connected to the rear panel AUX IN port.

Installing a Module into a Mainframe

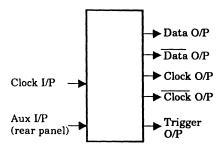
1. Open the front panel door, then insert the module into the mainframe (the module can operate in any location).

Caution

The Mainframe LINE power switch must be set to off before the front panel door will open.

2. Secure the module by pressing against its front panel while tightening the hex-nut latch with an 8 mm hex-ball driver.

When removing a Pattern Generator module, disconnect any cable that may be connected to the rear panel AUX IN port.


Specification

Introduction

Except where otherwise stated, the following parameters are the warranted performance specifications. Parameters described as typical or nominal are supplemental characteristics which provide a useful indication of typical, but non-warranted, performance characterstics. All soecifications ar for 0°C to 45°C after 30 minutes.

Pattern Generator Modules

The HP 70841A and 70845A are two pattern generator modules in Hewlett-Packard's Modular Measurement System (MMS). Each occupies 4/8 module slots and has seven I/O ports, six on the front panel and one on the rear:

Operating Frequency Range: HP 70841A: 100 Mbit/s to 3 Gbit/s. HP 70845A: 50 Mbit/s to 1 Gbit/s.

All data refers to 1 and 3 Gbit/s modules, unless otherwise noted.

Patterns

PRBS Test Patterns:

 2^{23} -1, polynomial $D^{23} + D^{18} + 1 = 0$, inverted (as in CCITT Rec 0.151). 2^{16} -1, polynomial $D^{16} + D^{14} + 1 = 0$, inverted (as in CCITT Rec 0.151). 2^{10} -1, polynomial $D^{10} + D^{7} + 1 = 0$, inverted.

 2^{7} -1, polynomial $D^{7} + D^{6} + 1 = 0$, inverted. Zero Substitution/Variable Mark Density Test Patterns:

Density Test Patterns:
8192 bits, based on 2¹³-1 PRBS;
2048 bits, based on 2¹⁴-1 PRBS;
1024 bits, based on 2¹⁶-1 PRBS;
128 bits, based on 2⁷-1 PRBS.
Zero Substitution: Zeros can be substituted for data to extend the longest run of zeros in the above patterns. The longest run can be extended to the pattern length, minus one. The bit after

the substituted zeros is set to 1. Variable Mark Density: The ratio of 1s to total bits in the above patterns can be set to 1/8, 1/4, 1/2, 3/4 and 7/8.

Word Test Patterns: Variable length user patterns from 1 to 8192 bits.
Resolution: From 1 to 255 bits in 1-bit steps; 256 to 8192 bits in 32-bit steps.
Four stores are provided for user patterns. Each store can hold one pattern up to 8192 bits long.

Alternating Word Test Patterns: Alternate between two userprogrammable 16-bit words under the control of the auxiliary input; changeover is synchronous with the end of a word.

A word 16 bits		B word 16 bits			
A	Α	A	В	В	A
Auxili Input	ary	٦			

Data Output Inhibit: The data output can be inhibited under the control of the auxiliary input. The output is forced to zero for a multiple of 16 bits from the start of a 16-bit block in the pattern. Error Add: There are two modes of operation:

Single errors on demand;

Single errors on demand; Fixed error ratio of 1 error in 10⁶ bits. **Data Polarity:** Selectable normal or inverted data.

Clock Input

Waveform: Sinewave from the HP 70322A or 70320A signal generator modules.
Amplitude Range: ± 4 dBm.

Return Loss: Over operating frequency range: > 10 dB typical.

Impedance: 50Ω nominal.

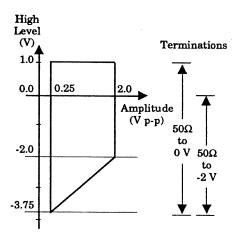
Interface: ac coupled.
Connector: N-type female.
Alternative Clock Sources: The
HP 8665A and 8644A synthesized signal
generators are compatible. Other clock
sources can be used provided they meet
the following criteria:

Noise: SSB broadband noise floor, offsets >10 MHz from the carrier in the range 10 MHz to 4 GHz:

	Noise Floor in dBc/Hz		
Carrier Frequency	HP 70841A	HP 70845A	
< 300 MHz 300 MHz to 1.0 GHz 1.0 GHz to 2.0 GHz > 2.0 GHz	<-140 <-130 <-130 <-140	< -140 < -130	

Data and Data Outputs

Except where stated, all specifications are with the outputs terminated 50Ω to 0 V.


Format: NRZ.

Levels: Selectable amplitude and offset or nominal ECL, into 50Ω to 0 V or 50Ω to -2 V.

Amplitude:

Range: 0.25 to 2 V p-p nominal. Resolution: 10 mV nominal.

Offset: The output amplitude and offset (high level) can be set as shown below:

High Level Resolution: 10 mV nominal.

High Level: -0.90 V nominal. Low Level: -1.75 V nominal.

Delay: Data delay variation vs clock

output transitions: Range: ± 1 ns nominal. Resolution: 5 ps nominal.

Jitter: Specified for 223-1 PRBS, 2 V p-p output amplitude, 0 V high level and measured relative to clock/32 trigger pulse.

HP 70841A	HP 70845A
at 3 GHz	at 1 GHz
< 15 ps rms	< 30 ps rms

Transition Times and Overshoot: Specified for 0101 pattern, 1 V p-p output amplitude and 0 V high level at

Transition Times:

	HP 70841A at 3 GHz	HP 70845A at 1 GHz
20% to 80%	< 90 ps	< 180 ps
10% to 90%	< 120 ps	< 250 ps

Specified over full operating frequency range for 0101 pattern, 0.5 to 2 V p-p output amplitude and 0 V high level. Transition Times (typical):

	HP 70841A	HP 70845A
10% to 90%	< 150 ps	< 300 ps

Preshoot/Overshoot: < 15% typical. Impedance: 50Ω nominal.

Interface: dc coupled. Connectors: N-type female.

Clock and Clock Outputs

All specifications are for the output terminated 50Ω to 0 V.

Amplitude:

Range: 0.5 to 2 V p-p nominal. Resolution: 10 mV nominal. Transition Times and Overshoot: Transition Times: 10% to 90% at 25°C (typical).

	HP 70841A	HP 70845A
3 GHz	< 120 ps	-
1 GHz	< 130 ps	< 300 ps
100 MHz	< 1.3 ns	< 2 ns

Preshoot/Overshoot: < 15% typical at

25°C.

Impedance: 50Ω nominal. Interface: ac coupled. Connectors: N-type female.

Trigger Output

Provides a trigger pulse synchronous with the pattern or clock. There are two modes of operation: pattern mode and clock/32 mode.

Pattern Mode: For all patterns except alternate word, the output is a 16-clockperiod trigger pulse synchronized to repetitions of the pattern. The pulse repetition rate depends on the pattern length (with the exception of alternate word patterns) and occurs at least every 32 repetitions of the pattern. The rising edge of the trigger pulse is active. PRBS Test Patterns (2n-1): Pulse synchronized to a selectable trigger pattern n-bits long in the PRBS. Word Test Patterns: The trigger pulse can be synchronized to any bit in the pattern.

Alternate Word Test Patterns: Trigger output changes as the word alternates under control of the auxiliary input.

Clock/32 Mode: The trigger pulse output is the input clock divided by 32.

Pulse Amplitude: Output terminated 50Ω to 0 V. High: 0 V nominal. Low: -0.75 V nominal. Impedance: 50Ω nominal. Interface: dc coupled. Connector: N-type female.

Auxiliary Input

Provides a means of controlling the alternate word changeover or forcing the data output to zero.

Alternate Word Selected: The input signal forces a change between the two 16-bit patterns at the end of either pattern.

Alternate Word Not Selected: The input signal forces the data output to zero.

Levels: TTL compatible, active low. Pulse Width:

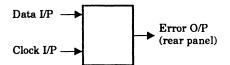
Clock	Minimum Pulse Width		
≥ 500 MHz	100 ns		
< 500 MHz	250 ns		

Interface: dc coupled. Connector: BNC female.

Frequency Measurement

Measures the incoming clock frequency to five significant digits.

Status Indicators


Front Panel LEDs:

Clock Loss: Indicates nominal low clock power or overload at Clock Input. HP-IB and HP-MSIB: Six LEDs indicate status.

Error Detector Modules

The HP 70842A and the HP 70846A error detector modules complement the pattern generator modules.

Each occupies 4/8 MMS module slots and has three I/O ports, two on the front panel and one on the rear.

Operating Frequency Range: HP 70842A: 100 Mbit/s to 3 Gbit/s. HP 70846A: 50 Mbit/s to 1 Gbit/s.

To avoid duplication, reference will be made to the pattern generator section where appropriate.

All data refers to 1 and 3 Gbit/s error detector modules unless otherwise stated.

Patterns

PRBS, with or without zero substitution/ variable mark density, and word test patterns are as specified for pattern generator modules.

Data Polarity: Selectable normal or inverted data.

Clock Input

Waveform: Compatible with the output of the following: Signal Generator Modules: HP 70322A,

70320A.

Signal Generators: HP 8665A, 8644A. Pattern Generator Modules: HP 70841A, 70845A.

Amplitude Range: ± 4 dBm.

Return Loss: Over operating frequency

range: > 10 dB typical. Impedance: 50Ω nominal. Interface: ac coupled. Connector: N-type female. Alternative Clock Sources: Other clock sources offering a similar performance to those listed under Waveform above can be used provided they meet the following criteria: Noise: SSB broadband noise floor, offsets > 10 MHz from the carrier in the range 10 MHz to 4 GHz:

Carrier Frequency	Noise Floor		
< 300 MHz	< -140 dBc/Hz		
> 300 MHz	< -130 dBc/Hz		

Data Input

Data Sampling Clock Edge: Selectable rising or falling edge. Termination Voltage: Selectable 0 V or -2 V nominal. Levels: Amplitude: Min, 0.5 V p-p; Max, 2.0 V p-p nominal. Offset (nominal):

	Terminations	
	50Ω to 0 V	50Ω to -2 V
Maximum Input Voltage	+1 V	0 V
Minimum Input Voltage	-4 V	-4 V

0/1 Threshold: The electrical interface allows for a range of input amplitudes and dc offsets. The 0/1 threshold is set using one of three modes:

Automatic Track: Tracks the mean dc level of the input signal. The measured threshold is displayed.

Automatic Center: The error detector sets the 0/1 threshold midway between two points, top and bottom of the "eye", where the bit error ratio is equal to a selectable threshold. The "eye" height is calculated and displayed.

Manual: Sets the 0/1 threshold manually.

Range: +1 to -4 V nominal. Resolution: 10 mV nominal.

Delay:

The data sampling point can be set automatically to the center of the "eye". The error detector sets the data/clock delay midway between two points either side of the "eye" where the bit error ratio is equal to a selectable threshold. The "eye" width is calculated and displayed. The sampling point can also be set manually by altering the data/clock

Data delay variation vs selected clock

Range: ± 1 ns nominal. Resolution: 5 ps nominal. Automatic Data/Clock Alignment and 0/1 Threshold Center: Selectable error-ratio thresholds from 0 to 1 x 10-1. Return Loss: 300 kHz to 3 GHz: > 10 dB typical. Impedance: 50Ω nominal. Interface: dc coupled.

Connector: N-type female.

Error Output

Provides an electrical signal to indicate received errors. The error output pulse is the logical "OR" of all errors in a 16-bit period.

All specifications are for the output terminated 50Ω to 0 V.

Format: NRZ, active high. Amplitude: High: 0 V nominal. Low: -800 mV nominal. Pulse Width:

For 1-bit error: 16 clock periods nominal.

Impedance: 50Ω . Interface: dc coupled. Connector: BNC female.

Audible Error Indicator

There is a selectable, audible beep on error. Single errors produce a beep. For error ratios above 1 x 10°, beep repetition rate increases with error ratio in five steps: 1×10^{-6} , 10^{-7} , 10^{-5} , 10^{-3} , 10^{-1} . Requires an MMS display.

Measurement Period

Real-time Clock: Provides time and date information for event logging. Battery back-up allows clock to continue running when the instrument is switched off or power fails. Elapsed Time Indication: Shows

elapsed time from the start of a gating period; resets to zero at the start of each gating period; holds value when measurement stopped.

Gating Periods: There are three gating (measurement timing) modes: Manual, Timed Single and Timed Repeat. Manual: Gating period is controlled by the Run/Stop Gating keys. Accumulating results are displayed throughout the measurement and the end of measurement results are held until a new gating period is started. Timed Single: Gating period is started

by pressing the Run Gating key and terminates at the end of the gating period set by the user. Accumulating results are displayed throughout the gating period and the end of gating results are held until a new gating period

Timed Repeat: Similar to Timed Single but when one timed gating period ends, a new identical period starts. This continues until the measurement is terminated by pressing the Stop Gating key. The measurement results displayed during any period can be the final results of the previous period or the accumulating results for the current period. There is no "deadtime" between consecutive periods.

Minimum Gating Period: 1 second. Maximum Gating Period: 99 days, 23 hours, 59 minutes, 59 seconds. Resolution: 1 second.

The gating period excludes any periods when the instrument is not powered.

Error Measurements

The error detector counts bit errors by comparing the incoming data bit-by-bit with the internally-generated reference pattern. All measurements run during the gating periods as described with the exception of Delta Error Count and Delta Error Ratio. These measurements run continuously to facilitate user adjustments for minimizing errors. Error Count: The total number of errors during the gating period. Delta Error Count: The number of errors in successive decisecond intervals. Error Ratio: The ratio of counted errors to the number of bits in the selected gating period. Delta Error Ratio: The ratio of counted errors to the number of bits in successive decisecond intervals. Errored Intervals: Time intervals during which one or more errors occurred. These intervals are errored seconds, deciseconds, centiseconds or milliseconds.

Error Analysis

occurred

The error analysis is based on CCITT Rec G.821 and is derived from the bit error results.

Error Free Intervals: Time intervals of seconds, deciseconds, centiseconds or

milliseconds, during which no errors

% Unavailability: The error ratio is calculated over 1 second timed intervals during the gating period. An unavailable period begins when the error ratio is worse than 1 x 10³ for 10 consecutive seconds. These 10 seconds are considered part of the unavailable time. The unavailable period ends when the error ratio is better than 1 x 10-3 for 10 consecutive seconds. These 10 seconds are considered part of the available time. % Unavailability is the ratio of the unavailable seconds to the total gating period expressed as a percentage. % Availability: The ratio of the available seconds to the total gating period expressed as a percentage.

% Errored Seconds: The ratio of the errored seconds in the available time to the total number of seconds in the available time, expressed as a percentage. % Severely Errored Seconds: The ratio of the total number of available seconds with an error ratio worse than 1 x 10⁻³ to the total number of available seconds, expressed as a percentage. % Degraded Minutes: Severely errored seconds are discarded from the available time and the remaining seconds are grouped into blocks of 60 seconds. Blocks which have an error ratio worse than 1 x 10⁻⁶ are called degraded minutes and % degraded minutes is the ratio of the total number of degraded minutes to the total number of 60 second blocks in the available time expressed as a percentage.

Power-loss Seconds

Displayed as the number of seconds the error detector is not able to make measurements during a gating period owing to ac-power-loss. The gating continues to the end of the selected period following restoration of power.

Sync-loss Seconds

Displayed as the number of seconds the error detector loses pattern synchronization during a gating period.

Pattern Synchronization

Synchronization to the incoming pattern can be performed automatically or manually. In manual mode, the Sync Start key forces the error detector to attempt synchronization with the received pattern. Sync Gain/Loss Criteria: The criterion for gaining or losing synchronization is the error ratio in a 1 ms interval. Selectable error-ratio thresholds of 1 x 10⁻¹, 10⁻², 10⁻³ or 10⁻⁴ are provided. Resync Time: PRBS 223-1, 216-1, 210-1: < 200 ms nominal; PRBS 27-1: < 500 ms nominal Word patterns: < n x 2 ms +200 ms nominal where n is the pattern length in bits.

Frequency Measurement

The incoming clock frequency is measured and displayed to five significant digits.

Result Logging

Results can be logged to most standard HP-IB 80-column printers. There are two modes of operation; with and without an external controller.

With an external controller, information on results, status and alarms is provided for the controller.

Without an external controller, the error detector module can be set to controller mode to permit output of results, status and alarms to an external printer or other logging device.

Print Modes: Two modes are provided: On-Demand: Prints time-of-day and selected set of results when Log On Demand key is pressed. Gating: Logs time-stamped events during gating and/or a user-selected summary of measured results and alarm durations at the end of each gating period. A conditional printing trigger can be set so that printing occurs only on errors or error ratios exceeding a value selected by the user.

Status Indicators

Front Panel LEDs:

Gating: Signifies measurements in progress.

Clock Loss: Indicates nominal low clock power at Clock Input.

Data Loss: Indicates no transitions in the last decisecond.

Sync Loss: Illuminated in accordance with sync gain/loss criteria as specified. Errors: Indicates one or more data errors in the last decisecond. HP-IB/MSIB: Six LEDs indicate status.

Signal Generator **Modules**

The signal generator modules provide the clock sources to drive the pattern generator modules. There are two compatible signal generator modules, the HP 70322A, 100 kHz to 4200 MHz and the HP 70320A, 252 kHz to 1030 MHz. They are based on the HP 8665A and 8644A synthesized signal generators.

Each signal generator is an 8/8 wide module that does not require an HP 70001A mainframe.

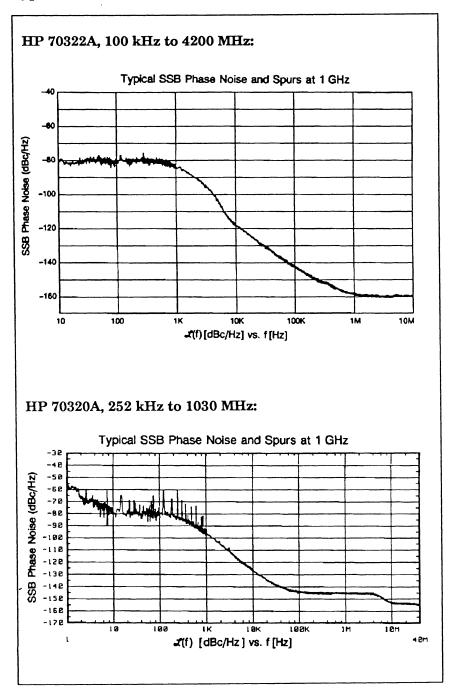
The output is from a front panel RF connector.

Summary Specifications

All data refers to both signal generator modules operating under control of the HP 70841A and 70845A pattern generator modules.

Frequency: Resolution: 1 Hz. Accuracy and Stability:

Aging	±2 ppm/year after 1 year	
Temperature	± 4 ppm, 0 to +55°C	
Line Voltage	± 0.1 ppm, ± 10%	


Spectral Purity: Spurious Harmonics: HP 70322A: < -30 dBc, output \leq 10 dBm. HP 70320A: < -30 dBc, output \leq 8 dBm. SSB Phase Noise:

		SSB Phase Noise in dBc/Hz		
Carrier	Carrier	HP	HP	
Frequency	Offset	70322A	70320A	
2.99 GHz	20 kHz 1 kHz	-111 -67	-	
1 GHz	20 kHz	-117	-128	
	1 kHz	-73	-89	

See typical phase noise plots opposite.

Impedance: 50Ω nominal. Connector: N-type female.

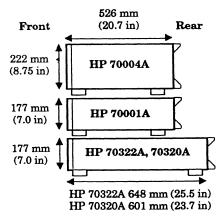
Typical Phase Noise Plots at 1 GHz

General

Remote Control

HP-IB Interface and Capability: Operates according to IEEE standard 488.1 and 488.2, 1987. Conforms, where appropriate, to the Standard Commands for Programmable Instruments (SCPI) standard 1990.0. Capability: SH1, AH1, T6, TE0, L4, LEO, SR1, RL1, PPO, DC1, DT0, C1, C2, C3, C28. Modes: Addressable or controller. Addressable: An external controller has access to all the current results, status and alarms and can control all module functions except HP-IB, HP-MSIB

addresses and power switch. Controller: The HP 70842A and 70846A error detector modules output results to an external printer over HP-IB without an external controller.


Power Requirements

Voltage Range: Selectable 100, 120, 220 and 240 V ac (± 10%) nominal. Frequency Range: 44 to 66 Hz and 400 Hz nominal. Power Consumption: HP 71601A or 71603A: 1000 VA max. HP 71602A or 71604A: 800 VA max. All module power requirements are supplied by the mainframe or display.

Physical

Dimensions:

Width: all units: 425 mm (16.75 in). Height and Depth: See sideview diagram below.

Add 23 mm (0.91 in) to depth to include front panel connectors.

Weight (nominal): HP 71601A or 71603A error performance analyzer: 82 kg (181 lb) net. HP 71602A or 71604A pattern generator: 61 kg (135 lb) net. Elements: HP 70001A mainframe: 14.5 kg (32.0 lb) net. HP 70004A display: 20.0 kg (44 lb) net. HP 70320A signal generator: 28 kg (61 lb) net. HP 70322A signal generator: 31 kg (68 lb) Plug-in Modules: HP 70841A or 70845A pattern generator: 6.5 kg (14 lb) net. HP 70842A or 70846A error detector: 6.0 kg (13 lb) net.

Environmental

Operating Temperature Range: 0°C to 45°C. Storage Temperature Range: -40°C to +65°C Humidity: Operation 15% to 95% relative humidity at 40°C, noncondensing. EMC: Conducted and Radiated interference is in compliance with CISPR Pub 11, FTZ 526/1979, and MIL-STD 461B RE02/part 7. Calibration Interval: Recommended one year.

Summary of specification differences between 1 and 3 Gbit/s pattern generator and error detector modules (see relevant section in specifications for any qualifying information)

	HP 70841A pattern generator	HP 70842A error detector	HP 70845A pattern generator	HP 70846A error detector
Frequency range	100 Mbit/s to 3 Gbit/s	100 Mbit/s to 3 Gbit/s	50 Mbit/s to 1 Gbit/s	50 Mbit/s to 1 Gbit/s
Data and data output jitter	< 15 ps rms		< 30 ps rms	
Data and data transition times 10% to 90% 20% to 80%	< 120 ps < 90 ps		< 250 ps < 180 ps	
Clock and clock transition times typical; 10% to 90% at				
3 GHz 1 GHz 100 MHz	< 120 ps < 130 ps < 1.3 ns		< 300 ps < 2 ns	

Performance Tests

Introduction

Module Verification

This chapter contains procedures to test the electrical performance of the Pattern Generator and Error Detector modules to the specifications listed in chapter 3.

The Pattern Generator module test procedures start on page 4-4.

The Error Detector module test procedures start on page 4-50.

System Verification

If the electrical performance of an Error Performance Analyzer or Pattern Generator system has to be verified, then in addition to the above tests each element in the system must be checked, using the performance tests from the appropriate manual.

Use the following table to identify the elements (by product number) which make up the system to be tested.

Element	Error Performance Analyzer		ment Error Performance Analyzer Pattern Generator		enerator
	HP 71601A	HP 71603A	HP 71602A	HP 71604A	
	(.05-1 Gbit/s)	(0.1-3 Gbit/s)	(.05-1 Gbit/s)	(0.1-3 Gbit/s)	
Display *	HP 70004A	HP 70004A	HP 70004A	HP 70004A	
Mainframe	HP 70001A	HP 70001A	-	-	
Pattern Generator	HP 70845A	HP 70841A	HP 70845A	HP 70841A	
Error Detector	HP 70846A	HP 70842A	-	_	
Clock Source	HP 70312A	HP 70311A	HP 70312A	HP 70311A	

^{*}Monochrome Display HP 70205A or HP 70206A may be substituted.

Test Levels

There are two levels of performance testing:

Operational Verification Provides >90% confidence that the system or module is operating

to its full warranted specification.

Full Performance Test Ensures that the system or module is operating to its full

warranted specification.

Performance tests for the Pattern Generator and Error Detector must be done in the order shown. A list of the recommended test equipment required is given in the table on page 4-3.

Results of each module Performance Test may be recorded on the Test Record at the end of chapter 4, or on the Abbreviated Test Record for Operational Verification.

If any module test fails to meet specification, refer to the Adjustments in the Service Manual. If after adjustment the specification still cannot be met, refer to the Troubleshooting in Chapter 5 of this manual.

Calibration Cycle

The system requires periodic verification of performance. Results may be recorded on the Test Record at incoming inspection and used for comparison in yearly maintenance and calibration or after repairs or adjustments.

Warm-up Time

The system must be switched on for a minimum of 30 minutes before carrying out any tests.

Performance Tests

Introduction

Module Verification

This chapter contains procedures to test the electrical performance of the Pattern Generator and Error Detector modules to the specifications listed in chapter 3.

The Pattern Generator module test procedures start on page 4-4.

The Error Detector module test procedures start on page 4-50.

System Verification

If the electrical performance of an Error Performance Analyzer or Pattern Generator system has to be verified, then in addition to the above tests each element in the system must be checked, using the performance tests from the appropriate manual.

Use the following table to identify the elements (by product number) which make up the system to be tested.

Element	Error Performance Analyzer		Pattern G	enerator
	HP 71601A	HP 71603A	HP 71602A	HP 71604A
	(.05-1 Gbit/s)	(0.1-3 Gbit/s)	(.05-1 Gbit/s)	(0.1-3 Gbit/s)
Display *	HP 70004A	HP 70004A	HP 70004A	HP 70004A
Mainframe	HP 70001A	HP 70001A	-	-
Pattern Generator	HP 70845A	HP 70841A	HP 70845A	HP 70841A
Error Detector	HP 70846A	HP 70842A	-	_
Clock Source	HP 70320A	HP 70322A	HP 70320A	HP 70322A

^{*}Monochrome Display HP 70205A or HP 70206A may be substituted.

Test Levels

There are two levels of performance testing:

Operational Verification Provides >90% confidence that the system or module is operating

to its full warranted specification.

warranted specification.

Performance tests for the Pattern Generator and Error Detector must be done in the order shown. A list of the recommended test equipment required is given in the table on page 4-3.

Results of each module Performance Test may be recorded on the Test Record at the end of chapter 4, or on the Abbreviated Test Record for Operational Verification.

If any module test fails to meet specification, refer to the Adjustments in the Service Manual. If after adjustment the specification still cannot be met, refer to the Troubleshooting in Chapter 5 of this manual.

Calibration Cycle

The system requires periodic verification of performance. Results may be recorded on the Test Record at incoming inspection and used for comparison in yearly maintenance and calibration or after repairs or adjustments.

Warm-up Time

The system must be switched on for a minimum of 30 minutes before carrying out any tests.

Recommended Test Equipment

The test equipment required is listed in the following table. Equipment which meets or exceeds the critical specifications may be substituted for the recommended model.

Recommended Test Equipment

Instrument	Critical Specification	Recommended Model	Use *
Display Unit **	Unique	HP 70004A	PATO
Mainframe Unit **	Unique	HP 70001A	PATO
Pattern Generator ** ‡	Unique	HP 70841A	PATO
Pattern Generator ** ‡	Unique	HP 70845A	PATO
Digitizing Oscilloscope	> 20 GHz Bandwidth	HP 54121T	РАТО
Four Channel Test Set	50 Ω Termination. Interface to Digitizing Oscilloscope with selectable attenuation.	HP 54121A	PATO
Frequency Counter	Frequency Range 10 Hz-1.3 GHz, Ratio Measurement.	HP 5328B Opt 031	РТО
Microwave Counter	Frequency Range 10 Hz-3 GHz	HP 5343A; HP 5342A	РТО
Synthesized Sweeper	50 MHz-3 GHz Sinewave RF. Output -10 to +10 dBm. Noise < -140 dBc, f < 300 MHz; < -130 dBc, 300 MHz-2 GHz; < -140 dBc, f > 2 GHz.	HP 83620A; HP 8665A	
RF Accessory Kit	Cables and connectors supplied with unit.	HP 15680A	PATO
Power Meter	$-10 \text{ to } +10 \text{ dBm } \pm 0.03 \text{ dB}; 50 \text{ MHz}$ to 3 GHz.	HP 436A	PATO
Power Splitter	$-10 \text{ to } +10 \text{ dBm } \pm 2\%; 50 \text{ MHz to } 3$ GHz; 50Ω .	HP 8481A; HP 8482A	PATO
Power Splitter	Output Tracking <0.1 dB; 50 MHz to 3 GHz; 50Ω.	HP 11667A; HP 11667B	PATO
Attenuator (fixed 10 dB)	50 MHz to 1 GHz; ± 1 dB; 50Ω .	HP 8491A; HP 8491B	РАТО

^{*}P=Performance Tests; A=Adjustments; T=Troubleshooting; O=Operational Verification

^{**} May be a calibrated part of the system under test.

[‡]The HP 70841A is required for 0.1 - 3 GHz systems; the HP 70845A is required for 0.05 - 1 GHz systems.

Operational Verification

The Operational Verification tests quickly establish with >90% confidence that the HP 71600 Series meets the specifications listed in Chapter 3. The following table lists all the Operational Verification Tests.

Operational Verification

Test	Page Number
Pattern Generator Checks	
Clock Input Levels	4-6
Clock Output Waveforms	4-10
Data Output Waveforms	4-16
PRBS 2 ⁿ -1 Pattern Length	4-27
Error Detector Checks	
Clock Input Levels	4-54
PRBS 2 ⁿ Synchonization, Error Detect and Memory Backup	4-61
Error Output Waveform and Data Input Delay	4-78

Pattern Generator Performance Tests

These tests (on pages 4-6 to 4-49) ensure that the HP 70845A 0.05-1 GHz and HP 70841A 0.1-3 GHz Pattern Generator modules meet specification. Before carrying out any of the tests - do the Pattern Generator Module Preliminary Setup.

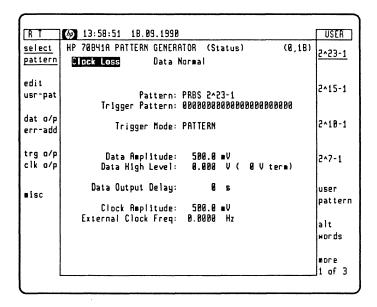
Test Frequencies

The terms minimum and maximum are used to define test frequencies in the performance tests. These frequencies are module dependent, see the following table:

Module	Minimum Frequency	Maximum Frequency
HP 70841A	100 MHz	3 GHz
HP 70845A	50 MHz	1 GHz

Clock Source

The HP 83620A Synthesized Sweeper provides the clock signal for the Pattern Generator module in the following performance tests.


Note

The system Clock Source should not be used for performance testing.

Pattern Generator Module Preliminary Setup

- 1. Note the Pattern Generator module HP-MSIB address (row, column). It must be returned to this setting after its performance has been verified.
- 2. Set the row address to 0 and the column address to 18, see page 2-9.
- 3. Plug the Pattern Generator module (to be tested) into the HP 70004A Display.
- 4. Power-on the Display (system selftest occurs at power-on, takes appproximately 15 seconds to complete).
- 5. Press (DISPLAY) followed by NEXT INST to establish a communication link between the Pattern Generator module and the Display.
- 6. Press (INST PRESET) to initialize the Pattern Generator module to its preset or default state. After several seconds the display should be as follows:

Clock Input Levels

Specifications

Clock Input

Waveform: Sinewave from the HP 70322A or HP 70320A Signal Generators.

Amplitude: ±4 dBm.

Return Loss: Over operating frequency range > 10 dB typical.

Impedance: 50Ω nominal.

Interface: ac coupled.

Connector: N-type female.

Alternative Clock Sources: The HP 8665A and HP 8644A Synthesized Generators are compatible. Other clock sources can be used provided they meet the following criteria:

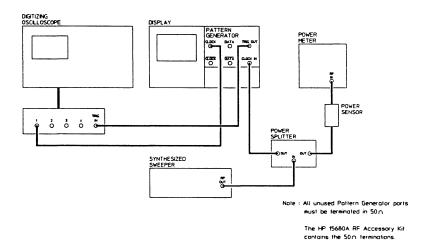
Noise: SSB broadband noise floor, offsets > 10 MHz from the carrier in the range 10 MHz to

4 GHz:

Carrier Frequency	Noise Floor (dBc/Hz)		
	HP 70841A	HP 70845A	
< 300 MHz	< -140	< -140	
300 MHz to 1 GHz	< -130	< -130	
1 GHz to 2 GHz	<-130		
> 2 GHz	< -140		

Description

A clock signal at 0 dBm is applied to the Pattern Generator CLOCK IN port from a Synthesized Sweeper. The Synthesized Sweeper output is reduced to the minimum level specified for the Pattern Generator CLOCK IN port - the CLOCK OUT signal is checked visually on the Digitizing Oscilloscope to ensure no degradation has occurred. The Synthesized Sweeper output is then increased to the maximum level specified for the Pattern Generator CLOCK IN port - again the CLOCK OUT signal is monitored on the Digitizing Oscilloscope to ensure no degradation has occurred. The Clock Loss alarm functions on the Pattern Generator are tested by reducing the CLOCK IN signal level until these alarms are displayed. These tests are repeated at two other clock frequencies.


Equipment

Synthesized Sweeper
Digitizing Oscilloscope: HP 54121T
Four Channel Test Set: HP 54121A
RF Accessory Kit: HP 15680A
Display: HP 70004A
Power Meter: HP 436A
Power Sensor: HP 8482A
Power Splitter: HP 11667A

Procedure

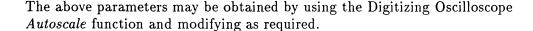
Checking the Minimum Level at the CLOCK IN port

- 1. Initialize the Pattern Generator, see page 4-5.
- 2. Press CLK O/P followed by CLOCK AMPLTD. Set the clock amplitude to 1 V using the numeric and ENTER keys. Set TRIGGER PAT CLK to CLK.
- 3. Connect the equipment as shown:

4. Set the Digitizing Oscilloscope for the following parameters:

CHAN : Atten X1; CH 1 on; CH 2,3,4; off CH 1 amplitude 200 mV/Div;

Offset 0 mV.

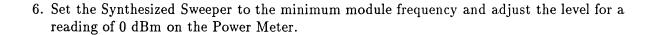

TIMEBASE : Sweep Speed 1 ns/Div; Delay 16 ns; Delay Ref left; Triggered.

TRIGGER. : Trig level -500 mV; Slope +ve; Atten X1; HF sense off; HF Reject

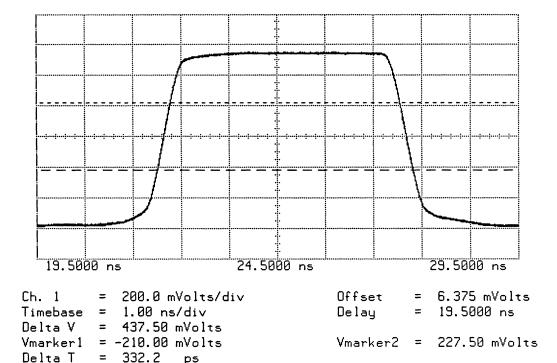
DISPLAY : Display Mode Persist; Display Time 10 s; Screen Single; Graticule

grid; Bandwidth 20 GHz.

Note



5. Set the Power Meter to read dBm (100% CAL factor).


Note

The Power Sensor should be calibrated using the Power Meter internal reference. Refer to the Power Meter Operating Manual for details.

Clock Input Levels

7. Adjust the Digitizing Oscilloscope timebase and delay to position a single *CLOCK OUT* pulse in the center of the display. The display below shows a typical pulse for the HP 70841A module:

Stop

= 17.6442 ns

Trigger on External at Pos. Edge at -480.5 mVolts

- 8. Reduce the Synthesized Sweeper for a reading of -4 dBm on the Power Meter.
- 9. Ensure the displayed pulse is unchanged from step 7. Any changes in pulse amplitude, risetime, falltime, preshoot and overshoot will be clearly observed on the display due to the long persist time.

Checking the Maximum Level at the CLOCK IN port

= 17.3120 ns

- 10. Increase the Synthesized Sweeper for a reading of +4 dBm on the Power Meter.
- 11. Ensure the displayed pulse is unchanged from step 7. Any changes in pulse amplitude, risetime, falltime, preshoot and overshoot will be clearly observed on the display due to the long persist time.

Checking Clock Loss Alarms

12. Reduce the Synthesized Sweeper level until the *CLK LOSS* alarm indicator on the Pattern Generator module is lit. The **Clock Loss** alarm message should appear on the display. Typically, *CLK LOSS* will occur below -10 dBm. Confirm this level on the Power Meter.

4-8 Performance Tests

Start

Checking CLOCK IN Levels at the Maximum Frequency

13. Repeat steps 7 to 12 with the Synthesized Sweeper frequency set to 1 GHz. The Digitizing Oscilloscope timebase and delay will need to be adjusted to obtain a single CLOCK OUT pulse for measurement.

HP 70841A Modules Only

14. Repeat steps 7 to 12 with the Synthesized Sweeper frequency set to 3 GHz. The Digitizing Oscilloscope timebase and delay will need to be adjusted to obtain a single CLOCK OUT pulse for measurement.

Clock Output Waveforms

Specifications

Clock and Clock Outputs

All specifications are for the output terminated 50Ω to 0 V.

Amplitude: Range: 0.5 V to 2 V p-p nominal. Resolution: 10 mV nominal.

Transition Times: 10 % to 90% at 25°C typical

	HP 70841A	HP 70845A
3 GHz	< 120 ps	-
1 GHz	< 150 ps	< 300 ps
100 MHz	< 1.3 ns	< 2 ns

Preshoot/Overshoot: < 15% typical at 25°C.

Impedance: 50Ω nominal.

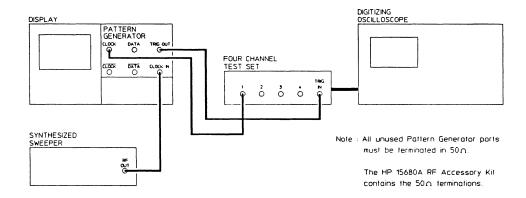
Interface: ac coupled.

Connectors: N-type female.

Description

A Digitizing Oscilloscope is used to measure selected parameters of the waveforms at the Pattern Generator $CLOCK\ OUT$ and $\overline{CLOCK\ OUT}$ ports to verify data delay.

In the data delay test the *trigger output* signal (which is in fixed phase alignment with the *data signal*) is used as the Digitizing Oscilloscope reference and the *clock signal* position on the display indicates the data delay.


Equipment

Synthesized Sweeper : HP 83620A
Digitizing Oscilloscope : HP 54121T
Four Channel Test Set : HP 54121A
RF Accessory Kit : HP 15680A
Display : HP 70004A

Procedure

Checking Maximum Frequency Waveforms at the CLOCK OUT Port

- 1. Initialize the Pattern Generator, see page 4-5.
- 2. Press CLK O/P followed by CLOCK AMPLTD. Set the clock amplitude to 1 V using the numeric and ENTER keys. Set TRIGGER PAT CLK to CLK.
- 3. Set the Synthesized Sweeper to the maximum module frequency and 0 dBm.
- 4. Connect the equipment as shown:

5. Set the Digitizing Oscilloscope for the following parameters:

CHAN : Atten X3; CH 1 on; CH 2,3,4; off CH 1 amplitude 20 mV/Div;

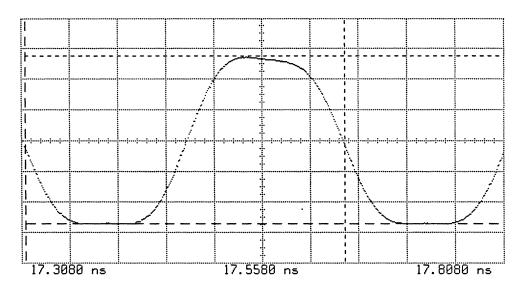
Offset 20 mV.

TIMEBASE : Timebase 50 ps/Div; Delay 16 ns; Delay Ref left; Triggered.

TRIGGER: Trig level -500 mV; Slope +ve; Atten X1; HF sense off; HF Reject

off.

DISPLAY : Display Mode Averaged; Number of Averages 8; Screen Single;


Graticule grid; Bandwidth 20 GHz.

Note

The above parameters may be obtained by using the Digitizing Oscilloscope *Autoscale* function and modifying as required.

Clock Output Waveforms

6. Adjust the Digitizing Oscilloscope amplitude, timebase and delay to obtain a display similar to the following. The display below shows a typical waveform for the HP 70841A.

Ch. 1 = 80.00 mVolts/divTimebase = 50.0 ps/divCh. 1 Parameters Rise Time = 66.4 psFreq. = 3.01023 GHz+ Width = 161.4 psOvershoot = 571.4 m%RMS Volts = 174.62 mVolts

Offset = 6.375 mVoltsDelay = 17.3080 nsP-P Volts = 440.00 mVoltsFall Time = 72.4 ps 332.2 Period ps - Width 170.8 рs Preshoot = 0.000 % Dutycycle = 48.58

Trigger on External at Pos. Edge at -480.5 mVolts

7. Use the Digitizing Oscilloscope MEASUREMENT function to check the following waveform parameters:

Measured Parameter	HP 70841A	HP 70845A
Rise Time (10% to 90%)	< 120 ps	< 300 ps
Fall Time (10% to 90%)	< 120 ps	< 300 ps
Preshoot	< 15%	< 15%
Overshoot	< 15%	< 15%

Note

If poor rise and fall times are obtained, the Digitizing Oscilloscope may NOT be estimating the waveform 0-100% level correctly, use the following:

- i. Select *Delta V* then set MARKER 1 to pulse minimum and MARKER 2 to pulse maximum using the *SET MARKER 1* and *SET MARKER 2* keys (see step 6).
- ii. Set the marker preset levels to 10% and 90%.

- iii. Select Delta t, then adjust the Start Marker to cross V MARKER 1 at the rising edge of the waveform.
- iv. Adjust the Stop Marker to cross V MARKER 2 at the rising edge of the waveform.
- v. Note the Delta t reading. This gives the waveform rise time.
- vi. Select Delta t, then adjust the Start Marker to cross the V MARKER 2 at the falling edge of the waveform.
- vii. Adjust the Stop Marker to cross the V MARKER 1 at the falling edge of the waveform.
- viii. Note the Delta t reading. This gives the waveform fall time.
- 8. Repeat steps 6 and 7 with the Pattern Generator CLOCK AMPLTD set to 0.5 V and 2 V.

Checking the Maximum Module Frequency Waveforms at the CLOCK OUT Port

- 9. Connect Channel 1 of the Four Channel Test Set to the CLOCK OUT port. Ensure that the CLOCK OUT port is terminated in 50Ω .
- 10. Adjust the Digitizing Oscilloscope delay to position the one clock pulse at the center of the display.
- 11. Repeat steps 6 and 7 with the Pattern Generator CLOCK AMPLTD set to 2 V, 1 V and 0.5 V.
- 12. Return the Pattern Generator CLOCK AMPLTD to 1 V.

Checking the Minimum Module Frequency Waveforms at the CLOCK OUT Port

- 13. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 14. Adjust the Digitizing Oscilloscope amplitude, timebase and delay to obtain a display similar to that shown in step 6.
- 15. Use the Digitizing Oscilloscope MEASUREMENT function to check the following waveform parameters:

Measured Parameter	HP70841A	HP70845A
Rise Time (10% to 90%)	< 1.3 ns	< 2 ns
Fall Time (10% to 90%)	< 1.3 ns	< 2 ns
Preshoot		< 15%
Overshoot	< 15%	< 15%

Note

If poor rise and fall times are obtained, the Digitizing Oscilloscope may NOT be estimating the waveform 0-100% level correctly. Use the following manual procedure to check the rise and fall times manually on the Digitizing Oscilloscope.

Clock Output Waveforms

- i. Select *Delta V* then set MARKER 1 to pulse minimum and MARKER 2 to pulse maximum using the *SET MARKER 1* and *SET MARKER 2* keys (see step 6).
- ii. Set the marker preset levels to 10% and 90%.
- iii. Select *Delta t*, then adjust the *Start Marker* to cross V MARKER 1 at the rising edge of the waveform.
- iv. Adjust the Stop Marker to cross V MARKER 2 at the rising edge of the waveform.
- v. Note the Delta t reading. This gives the waveform rise time.
- vi. Select *Delta t*, then adjust the *Start Marker* to cross the V MARKER 2 at the falling edge of the waveform.
- vii. Adjust the Stop Marker to cross the V MARKER 1 at the falling edge of the waveform.
- viii. Note the Delta t reading. This gives the waveform fall time.
- 16. Repeat steps 14 and 15 with the Pattern Generator clock output level set to 0.5 V then 2 V.
- 17. Return the Pattern Generator CLOCK AMPLTD to 1 V.

Checking the Minimum Module Frequency Waveforms at the CLOCK OUT Port

- 18. Connect Channel 1 of the Four Channel Test Set to the Pattern Generator CLOCK OUT port. Ensure that the $\overline{CLOCK\ OUT}$ port is terminated in 50Ω .
- 19. Repeat steps 14 and 16.

Checking Relative CLOCK/CLOCK OUT Phases

- 20. Connect Channel 2 of the Four Channel Test Set to the CLOCK OUT port.
- 21. Switch on Channel 2 of the Digitizing Oscilloscope and set Channel 2 parameters to match Channel 1 (using Autoscale may ease setup).
- 22. Check that the $CLOCK\ OUT$ and $\overline{CLOCK\ OUT}$ waveforms are 180 degrees out of phase (antiphase).

Checking Relative CLOCK/DATA OUT Phases (Data Delay Test)

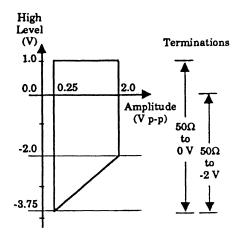
- 23. Set the Synthesized Sweeper for a 500 MHz sinewave at 0 dBm.
- 24. Switch off Channel 2 of the Digitizing Oscilloscope.
- 25. Press dat o/p followed by DAT O/P DELAY.
- 26. Set the Pattern Generator Data Out Delay to +1 ns using the numeric keys.

- 27. Adjust the Digitizing Oscilloscope timebase and delay to display two clock pulses call these LEFT and RIGHT pulses.
- 28. Set the Digitizing Oscilloscope display to Persist with a persist time of 300 ms.
- 29. Select *Delta V*, *Delta t* on the Digitizing Oscilloscope, then position the voltage and timing markers (ie MARKER 1 and START) to the center of the rising edge of the RIGHT pulse.
- 30. Slowly reduce the Pattern Generator Data Out Delay to -1 ns using the rotary knob. The LEFT pulse should move from left to right across the display.
- 31. Ensure the center of the rising edge of the LEFT pulse is now aligned with the markers.

Data Output Waveforms

Specifications

Data and Data Outputs


Except where stated, all specifications are with the outputs terminated 50Ω to 0 V.

Format: NRZ.

Levels: Selectable amplitude and offset or nominal ECL, into 50Ω to 0 V or 50Ω to -2 V.

Amplitude: Range: 0.25 to 2 V p-p Nominal. Resolution: 10 mV nominal.

Offset: The output amplitude and offset (high level) can be set as shown below:

High Level Resolution: 10 mV nominal.

ECL: High level: -0.90 V. Low Level: -1.75 V nominal.

Delay: Data delay variation vs clock output transition:

Range: ±1 ns nominal. Resolution: 5 ps nominal.

Transition Times: Specified for 0101 pattern, 1 V p-p output amplitude and 0 V high level

25°C.

Transition Times:

	HP 70841A at 3 GHz	HP 70845A at 1 GHz
10% to 90%	< 120 ps	< 250 ps
20% to 80%	< 90 ps	< 180 ps

Specified over full operating frequency range for 0101 pattern, 0.5 to -2 V p-p output amplitude and 0 V high level.

Transition Times (typical):

	HP 70841A	HP 70845A
10% to 90%	< 150 ps	< 300 ps

Preshoot/Overshoot: < 15% typical.

Impedance: 50Ω nominal.

Interface: dc coupled.

Connectors: N-type female.

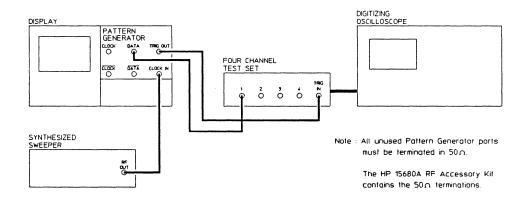
Data Polarity: Selectable normal or inverted data.

Description

A Digitizing Oscilloscope is used to measure selected parameters of the waveforms at the Pattern Generator DATA OUT and \overline{DATA} \overline{OUT} ports. Two spot frequencies are checked with patterns selected to optimize measurement accuracy.

Equipment

Synthesized Sweeper : HP 83620A Digitizing Oscilloscope : HP 54121T Four Channel Test Set : HP 54121A RF Accessory Kit : HP 15680A Display : HP 70004A


Procedure

Checking the Maximum Module Frequency Waveforms at the DATA OUT Port

- 1. Initialize the Pattern Generator, see page 4-5.
- 2. Press dat o/p followed by DATA AMPLTD. Set the data amplitude to 1 V using he numeric keys.
- 3. Press DATA HI-LEVEL. Set the data Hi level (pulse top) to 0 V using the numeric keys.
- 5. Press select pattern followed by user pattern. Press user pattern then select PATTERN 1.
- 6. Set the Synthesized Sweeper to the maximum module frequency and 0 dBm.

Data Output Waveforms

7. Connect the equipment as shown:

8. Set the Digitizing Oscilloscope for the following parameters:

CHAN : Atten X1; CH 1 on; CH 2,3,4 off; CH 1 amplitude 20 mV/Div;

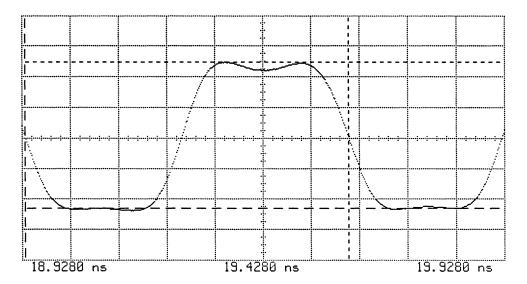
Offset 20 mV.

TIMEBASE: Timebase 100 ps/Div; Delay 16 ns; Delay Ref left; Triggered.

TRIGGER : Trig level -500 mV; Slope +ve; Atten X1; HF Sense off; HF Reject

off.

DISPLAY : Display Mode Averaged; Number of Averages 8; Screen Single;


Graticule: Grid; Bandwidth 20 GHz.

Note

뜅

The above parameters may be obtained by using the Digitizing Oscilloscope *Autoscale* function and modifying as required.

9. Adjust the Digitizing Oscilloscope amplitude, timebase and delay to position the *one* bit highlighted in step 4 at the center of the display. The display below shows a typical waveform for the HP 70841A:

Ch. 1 = 200.0 mVolts/div Timebase = 100 ps/div Ch. 1 Parameters Rise Time = 93.6 ps Freq. = 1.48854 GHz + Width = 345.8 ps Overshoot = 1.960 % RMS Volts = 667.92 mVolts Offset = -548.6 mVoltsDelay = 18.9280 ns P-P Volts = 975.00 mVolts Fall Time = 100.2 Period = 671.8 ps 326.0 - Width ps Preshoot = 0.000% Dutycycle = 51.47 %

Trigger on External at Pos. Edge at -473.5 mVolts

10. Use the Digitizing Oscilloscope MEASUREMENT function to check the following waveform parameters:

Measured Parameter	HP 70841	HP 70845A
Rise Time (10% to 90%)	< 120 ps	< 250 ps
Rise Time (20% to 80%)	< 90 ps	< 180 ps
Fall Time (10% to 90%)	< 120 ps	< 250 ps
Fall Time (20% to 80%)	< 90 ps	< 180 ps
Preshoot	< 15%	< 15%
Overshoot	< 15%	< 15%

Note

If poor rise and fall times are obtained, the Digitizing Oscilloscope may NOT be estimating the waveform 0-100% level correctly. Use the following manual procedure to check the rise and fall times manually on the Digitizing Oscilloscope.

Data Output Waveforms

- Select Delta V then set MARKER 1 to pulse minimum and MARKER 2 to pulse maximum using the SET MARKER 1 and SET MARKER 2 keys.
- ii. Set the marker preset levels to 10% and 90%.
- iii. Select *Delta t*, then adjust the *Start Marker* to cross V MARKER 1 at the rising edge of the waveform.
- iv. Adjust the Stop Marker to cross V MARKER 2 at the rising edge of the waveform.
- v. Note the Delta t reading. This gives the waveform rise time.
- vi. Select *Delta t*, then adjust the *Start Marker* to cross the V MARKER 2 at the falling edge of the waveform.
- vii. Adjust the Stop Marker to cross the V MARKER 1 at the falling edge of the waveform.
- viii. Note the Delta t reading. This gives the waveform fall time.

This manual procedure should also be used when measuring the 20-80% rise and fall times, (in step ii set the preset level to 20-80%).

Checking Maximum Module Frequency Waveforms at the DATA OUT Port

- 11. Connect Channel 1 of the Four Channel Test Set to the $\overline{DATA~OUT}$ port. Ensure that the $\overline{DATA~OUT}$ port is terminated in 50 Ω .
- 12. Press dat o/p on the Pattern Generator then set POLARITY NORMINV to INV (inverted output). Check that the waveform is similar to that shown in step 9. Repeat step 10 then set POLARITY NORMINV to NORM.
- 13. Press edit usr-pat followed by PATTERN 1 then set the pattern to 1010 10 10 1111 1111 0000 0000 1100 1100.
- 14. Adjust the Digitizing Oscilloscope delay to position the zero highlighted in step 13 at the center of the display.
- 15. Repeat step 10.

Checking 300 MHz Waveforms at the DATA OUT Port

- 16. Set the Synthesized Sweeper for a 300 MHz sinewave at 0 dBm.
- 17. Pressedit usr-pat followed by PATTERN 1. Set the pattern to 1010.
- 18. Adjust the Digitizing Oscilloscope amplitude, offset, timebase and delay to obtain a display similar to that shown in step 9.

19. Use the Digitizing Oscilloscope MEASUREMENT function to check the following data waveform parameters:

Measured Parameter	HP 70841A	HP 70845A
Rise Time (10% to 90%)	<150 ps	<300 ps
Fall Time (10% to 90%)	<150 ps	<300 ps
Preshoot	<15%	<15%
Overshoot	<15%	<15%

- 20. Press dat o/p followed by DATA AMPLTD. Set the amplitude to 0.5 V using the numeric keys. Repeat steps 18 and 19 with the data amplitude at 0.5 V and 2 V.
- 21. Return the Pattern Generator Data amplitude to 1 V.

Checking 300 MHz Waveforms at the DATA OUT Port

- 22. Connect Channel 1 of the Four Channel Test Set to the DATA OUT port. Ensure that the $\overline{DATA\ OUT}$ port is terminated in 50Ω .
- 23. Repeat steps 18 to 21.

Checking Relative DATA and DATA Phases

- 24. Connect Channel 2 of the Four Channel Test Set to the Pattern Generator DATA OUT
- 25. Switch on Channel 2 of the Digitizing Oscilloscope, then set the Channel 2 parameters to match Channel 1 parameters (using Autoscale may ease setup).
- 26. Check that the DATA OUT and \overline{DATA} OUT waveforms are 180 degrees out of phase (anti-phase).

Trigger Output Waveform and Data Output Intrinsic Jitter

Specifications

Jitter

Specified for 2²³-1 PRBS, 2 V p-p output amplitude, 0 V high level and measured relative to clock/32 trigger pulse:

HP 70841A at 3 GHz	HP 70845A at 1 GHz
< 15 ps rms	< 30 ps

Trigger Output

Provides a trigger pulse synchronous with the pattern or clock. There are two modes of operation: pattern mode and clock/32 mode.

Pattern Mode: For all patterns except alternate word, the output is a 16-clock period trigger pulse synchronized to repetitions of the pattern. The pulse repetition rate depends on the pattern length (with the exception of alternate word patterns) and occurs at least every 32 repetitions of the pattern. The rising edge of the trigger pulse is active.

PRBS Test Patterns (2ⁿ-1): Pulse synchronized to a selectable trigger pattern n-bits long in the PRBS.

Word Test Patterns: The trigger pulse can be synchronized to any bit in the pattern.

Alternate Word Test Pattern: Trigger output changes as the word alternates under control of the auxiliary input.

Clock/32 Mode: The trigger pulse output is the input clock divided by 32.

Pulse Amplitude: Output terminated 50Ω to 0 V. High: 0 V nominal. Low: -0.75 V

nominal.

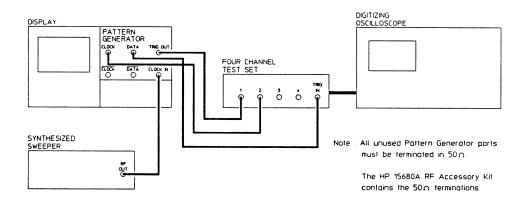
Impedance: 50Ω nominal.

Interface: dc coupled.

Connector: N-type female.

Description

A Digitizing Oscilloscope is used to measure the *intrinsic jitter* on the waveforms at the Pattern Generator *DATA OUT* and *DATA OUT* ports with respect to the reference *TRIGGER OUT* signal. The test is performed at the single specified pattern, clock frequency and Data amplitude. The *TRIGGER OUTPUT* signal is first checked for correct waveform parameters using the Digitizing Oscilloscope.


Equipment

Synthesized Sweeper : HP 83620A Digitizing Oscilloscope: HP 54121T Four Channel Test Set: HP 54121A RF Accessory Kit : HP 15680A Display : HP 70004A

Procedure

Checking Waveform at the Trigger Out Port

- 1. Initialize the Pattern Generator module, see page 4-5.
- 2. Press edit usr-pat followed by PATTERN 1. Set the pattern to 1000 0000 0000 0000 $0000\ 0000\ 0000\ 0000\ (see\ Appendix\ B).$
- 3. Press select pattern followed by user pattern. Press user pattern again then select PATTERN 1 to transmit the pattern.
- 4. Press trg o/p then set TRIGGER PAT CLK to CLK. This enables the Pattern Generator to output a trigger pulse every 32 clock pulses.
- 5. Set the Synthesized Sweeper to the maximum module frequency and 0 dBm.
- 6. Connect the equipment as shown:

7. Set the Digitizing Oscilloscope for the following parameters:

CHAN : Atten X1; CH 1,2 on; CH 3,4 off; CH 1 Amplitude 400 mV/Div;

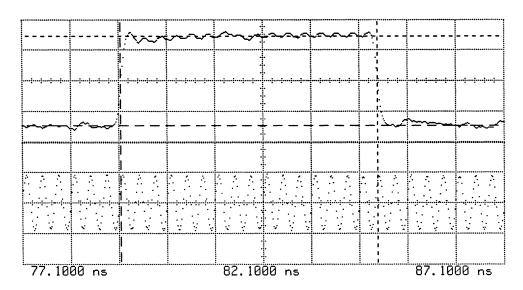
Offset -500 mV; CH 2 Amplitude 200 mV/div; Offset -500 mV.

TIMEBASE : Timebase 1 ns/Div; Delay 16 ns; Delay Ref left; Triggered.

TRIGGER : Trig level -200 mV; Slope +ve; Atten X1; HF Sense off; HF Reject

off.

DISPLAY : Display Mode Averaged; Number of Averages 8; Screen Dual;


Bandwidth 20 GHz.

Note

The above parameters may be obtained by using the Digitizing Oscilloscope *Autoscale* function and modifying as required.

8. Adjust the Digitizing Oscilloscope delay and timebase to display one trigger pulse. The display below shows a typical waveform for the HP 70841A:

Ch. 1 = 300.0 mVolts/divCh. 2 = 20.00 mVolts/div

Timebase = 1.00 ns/div Ch. 1 Parameters

Rise Time = 163.4 ps + Width = 5.3360 ns

Preshoot = 4.864 %

Offset = -472.1 mVolts Offset = 125.0 uVolts

Delay = 77.1000 ns P-P Volts = 956.25 mVolts

Fall Time = 175.8 ps Overshoot = 5.405 %

Trigger on External at Pos. Edge at -283.0 mVolts

- 9. Check that the trigger spans 16 clock pulses. Using a Digitizing Oscilloscope delay check that the full trigger period is 32 clock pulses.
- 10. Adjust the Digitizing Oscilloscope timebase and delay to center one trigger pulse across the display.
- 11. Measure the amplitude and width of the displayed pulse. Typically the amplitude of the pulse will be -0.75 V (that is, Hi level is 0 V, Low level is -0.75 V) and the width will be 5.3 ns.

Checking Intrinsic Jitter at the DATA OUT Port

- 12. Connect the Pattern Generator DATA OUT port to Channel 1 of the Four Channel Test Set.
- 13. Connect the Pattern Generator TRIGGER OUT to the trigger Channel of the Four Channel Test Set.
- 14. Initialize the Pattern Generator module, see page 4-5.
- 15. Press dat o/p followed by DATA AMPLTD. Set the data output amplitude to 2 V using the numeric keys.
- 16. Press DATA HI-LEVEL. Set the data Hi level to 0 V using the numeric keys.
- 17. Press trg o/p and set TRIGGER PAT CLK to CLK.
- 18. Set the Digitizing Oscilloscope as follows:
 - i. Select the following parameters:

CHAN : Atten X1; CH 1 on; CH 2, 3, 4 off; CH 1 Amplitude 400 mV/Div;

Offset -1 V

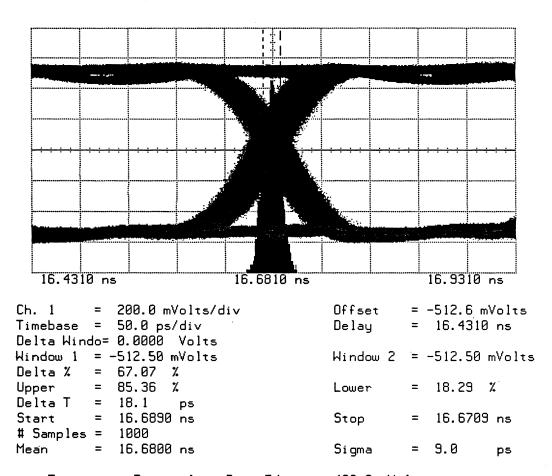
TIMEBASE : Timebase 50 ps/Div; Delay 16 ns; Delay Ref left; Triggered.

TRIGGER : Trig level -500 mV; Slope +ve; Atten X1; HF Sense off; HF Reject

off.

DISPLAY : Display Mode Persist; Persist time 300 ms; Screen single; Bandwidth

20 GHz.


Note

The above parameters may be obtained by using the Digitizing Oscilloscope Autoscale function and modifying as required.

Trigger Output Waveform and Data Output Intrinsic Jitter

ii. Adjust the timebase and delay to obtain a wavefrom similar to the following. The display below shows a typical waveform for the HP 70841A:

Trigger on External at Pos. Edge at -466.0 mVolts

- iii. Select HISTOGRAM followed by Window.
- iv. Adjust WINDOW MARKER 1 and WINDOW MARKER 2 to the center of the eye crossover.
- v. Select Acquire then enter 1000 (the number of samples).
- vi. Press Start Acquiring. The measurement ends when 100% appears at the top left of the display.
- vii. Select *Results* followed by *Sigma* to obtain the measured intrinsic jitter. This must be < 15 ps RMS for the HP 70841A or < 30 ps RMS for the HP 70845A.

Checking Intrinsic Jitter at the DATA OUT Port

19. Repeat step 18 with Channel 1 of the Four Channel Test Set connected to the $\overline{DATA\ OUT}$ port. Ensure the $DATA\ OUTPUT$ port is terminated in 50Ω .

PRBS 2ⁿ-1 Pattern Length

Specifications

```
PRBS Test Patterns 2<sup>23</sup>-1, polynomial D<sup>23</sup>+D<sup>18</sup>+1=0, inverted (as in CCITT Rec 0.151).
2^{15}-1, poynomial D^{15}+D^{14}+1=0, inverted (as in CCITT Rec 0.151).
2^{10}-1, polynomial D^{10}+D^7+1=0, inverted.
2^7-:1, polynomial D^7+D^6+1=0, inverted.
```

Description

A Frequency Counter is used to verify the PRBS pattern length and the number of ones in each of the four preset PRBS patterns.

The clock to trigger 0/1 transition ratio measured on the Frequency Counter verifies the pattern length of each PRBS. The data to trigger 0/1 transition ratio verifies the number of ones in each PRBS. Because the results are ratios, they are independent of clock frequency and Frequency Counter timebase accuracy.

These two tests confirm the major specified parameters in each PRBS pattern.

Equipment

Synthesized Sweeper: HP 83620A

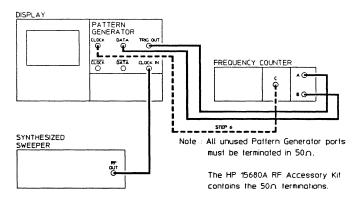
Frequency Counter: HP 5328B Option 031 (1300 MHz)

Microwave Counter: HP 5343A RF Accessory Kit : HP 15680A Display : HP 70004A

Procedure

Verifying the Number of Ones in a PRBS

- 1. Initialize the Pattern Generator module, see page 4-5.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Set the Frequency Counter as follows:


Ratio

: Slope +, Atten 1, Termination 50 Ω CH A CH B : Slope +, Atten 1, Termination 50 Ω

Scale (N) : 10

PRBS 2ⁿ-1 Pattern Length

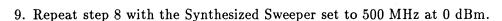
4. Connect the equipment as shown:

5. Press select pattern then set the Pattern Generator to the PRBS patterns listed in the following table. Check that the Frequency Counter readings match those listed in the table. The Frequency Counter scale factor (N) must be set to obtain the required resolution. It may be necessary to adjust the Frequency Counter sensitivity to obtain stable readings.

PRBS Pattern	Counter Reading
2^7-1	1024.0 ± 0.1
2^10-1	4096.0 ± 0.1
2^15-1	131072.0 ± 0.1
2^23-1	33554432.0 ± 0.1

Note

A trigger output pulse occurs every 32 patterns on PRBS 2⁷-1 and every 16 patterns on PRBS 2¹⁰-1, 2¹⁵-1 and 2²³-1.


Verifying PRBS Pattern Length

- 6. Connect a cable from the Pattern Generator CLOCK OUTPUT to Channel C of the Frequency Counter (90 MHz-1.3 GHz port).
- 7. Set the Frequency Counter to Ratio C/A.
- 8. Set the Pattern Generator to the PRBS patterns listed in the following table, check that the Frequency Counter readings match those listed in the table. The Frequency Counter scale factor (N) must be set to obtain the required resolution. It may be necessary to adjust the Frequency Counter sensitivity to obtain stable readings. The Frequency Counter will take several seconds to make a measurement on the longer patterns.

PRBS Pattern	Counter Reading
2^7-1	4064.0 ± 0.1
2^10-1	16368.0 ± 0.1
2^15-1	524272.0 ± 0.1
2^23-1	$(1)34217712.0 \pm 0.1$

Note

A trigger output pulse occurs every 16 patterns on PRBS 2⁷-1 and every 32 patterns on PRBS 2¹⁰-1, 2¹⁵-1 and 2²³-1.

10. Repeat step 8 with the Synthesized Sweeper set to 1 GHz at 0 dBm.

HP 70841A Module Only

- 11. Replace the Frequency Counter with the Microwave Counter.
- 12. Connected the Pattern Generator TRIGGER OUTPUT port to the 10 Hz-500 MHz input on the Microwave Counter (call this Channel A). Channel A must also have its 1 M Ω termination selected.
- 13. Connect the Pattern Generator CLOCK OUTPUT to the 500 MHz-26.5 GHz input on the Microwave Counter (call this Channel B).
- 14. Press select pattern followed by 2^7-1.
- 15. Set the Synthesized Sweeper to 3 GHz.
- 16. Measure and note the frequency on Channel A.
- 17. Measure and note the frequency on Channel B.
- 18. Calculate the ratio B/A. Ensure it is 4064.00 ± 0.1 .
- 19. Press select pattern followed by 2^10-1.
- 20. Measure and note the frequency of the signal on Channel A.
- 21. Measure and note the frequency of the signal on Channel B.
- 22. Calculate the ratio B/A. Ensure it is 16368.0 ± 0.5 .

PRBS 2ⁿ Variable Mark Density

Specifications

Variable Mark Density Test Patterns:

```
2^{13}, polynomial D^{13}+D^{12}+1=0

2^{11}, polynomial D^{11}+D^9+1=0

2^{10}, polynomial D^{10}+D^7+1=0

2^7, polynomial D^7+D^6+1=0
```

In the above patterns an extra zero is added to extend the longest run of zeros by one.

The ratio of ones to total bits in the above patterns can be set to 1/8, 1/4, 1/2, 3/4 and 7/8.

Description

A Frequency Counter is used to verify the pattern length and the number of *ones* in each of the four preset PRBS patterns with a variable Mark Density of 1/8, 1/4, 1/2, 3/4, 7/8.

The clock to trigger 0/1 transition ratio measured on the Frequency Counter verifies the pattern length of each PRBS. The data to trigger 0/1 transition ratio verifies the number of ones in each PRBS. Because the results are ratios, they are independent of clock frequency and Frequency Counter timebase accuracy.

Equipment

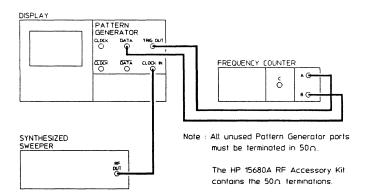
Synthesized Sweeper: HP 83620A

Frequency Counter: HP 5328B Option 031 (1300 MHz)

Microwave Counter : HP 5343A RF Accessory Kit : HP 15680A Display : HP 70004A

Procedure

Verifying the Number of Ones in the PRBS


- 1. Initialize the Pattern Generator module, see page 4-5.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Set the Frequency Counter as follows:

Ratio : B/A

CH A : Slope +, Atten 1, Termination 50Ω CH B : Slope +, Atten 1, Termination 50Ω

Scale (N) : 10

4. Connect the equipment as shown on the following page:

5. Press select pattern then use more 1 of 3 to display more 3 of 3. Set the Pattern Generator PRBS pattern and mark density ratio as listed in the following table, and check that the Frequency Counter readings match those listed. The Frequency Counter scale factor (N) must be set to obtain the required resolution. It may be necessary to adjust the Frequency Counter sensitivity to obtain stable readings.

PRBS Pattern	Mark Density Ratio	Counter Reading
2^7 MARKDEN	1/8	16.0 ± 0.1
2^7 MARKDEN	1/4	32.0 ± 0.1
2^7 MARKDEN	1/2	32.0 ± 0.1
2 ⁷ MARKDEN	3/4	16.0 ± 0.1
2 7 MARKDEN	7/8	8.0 ± 0.1
2^10 MARKDEN	1/8	112.0 ± 0.1
2^10 MARKDEN	1/4	192.0 ± 0.1
2^10 MARKDEN	1/2	256.0 ± 0.1
2^10 MARKDEN	3/4	192.0 ± 0.1
2 ¹⁰ MARKDEN	7/8	112.0 ± 0.1
2 ¹¹ MARKDEN	1/8	224.0 ± 0.1
2^11 MARKDEN	1/4	384.0 ± 0.1
2^11 MARKDEN	1/2	512.0 ± 0.1
2^11 MARKDEN	3/4	384.0 ± 0.1
2 ¹¹ MARKDEN	7/8	224.0 ± 0.1
2 ¹³ MARKDEN	1/8	896.0 ± 0.1
2 ¹³ MARKDEN	1/4	1536.0 ± 0.1
2 ¹³ MARKDEN	1/2	2048.0 ± 0.1
2^13 MARKDEN	3/4	1536.0 ± 0.1
2 ¹³ MARKDEN	7/8	896.0 ± 0.1

Note

There is a trigger output pulse at the end of every pattern on all the above PRBS rates.

Verifying the Pattern Length

- 6. Connect the Pattern Generator CLOCK OUTPUT port to Channel C of the Frequency Counter (90 MHz-1.3 GHz port).
- 7. Set the Frequency Counter to Ratio C/A.
- 8. Set the Pattern Generator to the PRBS patterns listed in the following table, and check that the Frequency Counter readings match those listed. The Frequency Counter scale factor (N) must be set to obtain the required resolution. It may be necessary to adjust the Frequency Counter sensitivity to obtain stable readings.

PRBS Pattern	Counter Reading
2^7	128.0 ± 0.1
2^10	1024.0 ± 0.1
2^11	2048.0 ± 0.1
2^13	8192.0 ± 0.1

Note

There is a trigger output pulse at the end of every pattern on all the above PRBS rates.

- 9. Repeat step 8 with the Synthesized Sweeper set to 500 MHz at 0 dBm.
- 10. Repeat step 8 with the Synthesized Sweeper set to 1 GHz at 0 dBm.

HP 70841A Module Only

- 11. Replace the Frequency Counter with the Microwave Counter.
- 12. Connect the Pattern Generator TRIGGER OUTPUT to the 10 Hz-500 MHz input on the Microwave Counter (call this Channel A). Channel A must also have its 1 M Ω termination selected.
- 13. Connect the Pattern Generator CLOCK OUTPUT to the 500 MHz-26.5 GHz input on the Microwave Counter (call this Channel B).
- 14. Set the Synthesized Sweeper to 3 GHz.
- 15. Set the Pattern Generator PRBS pattern to 2⁷7 MARKDEN.
- 16. Measure and note the frequency on Channel A.
- 17. Measure and note the frequency on Channel B.
- 18. Calculate the ratio B/A. Ensure it is 128.0 ± 0.1 .

PRBS 2ⁿ Variable Mark Density

19. Set the Pattern Generator to the PRBS patterns listed in the following table, repeat steps 16 to 18 at each PRBS. The expected ratio B/A at each PRBS is listed in the following table.

PRBS Pattern	B/A Ratio
2^10 MARKDEN	1024.00 ± 0.1
2^11 MARKDEN	2048.00 ± 0.1
2^13 MARKDEN	8192.00 ± 0.1

PRBS 2ⁿ Zero Substitution

Specifications

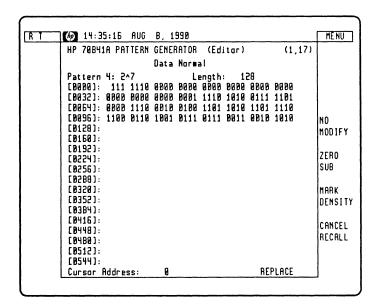
Zero Substitution Test Patterns:

```
2^{13}, polynomial D^{13}+D^{12}+1=0

2^{11}, polynomial D^{11}+D^9+1=0

2^{10}, polynomial D^{10}+D^7+1=0

2^7, polynomial D^7+D^6+1=0
```


In the above patterns an extra zero is added to extend the longest run of zeros by one.

Zeros can be substituted for data to extend the longest run of zeros in the above patterns. The longest run can be extended to the pattern length, minus one. The bit after the substituted zeros is set to 1.

Description

A Frequency Counter is used to verify the number of ones in each of the four preset PRBS patterns across the full zero substitution range.

The Data to Trigger 0/1 transition ratio verifies the number of *ones* in each PRBS. This will decrease as the longest run of *zeros* in the pattern is increased. An example of *zero substitution* is shown below for 2⁷ PRBS. In the following example the longest run of zeros is set to 40.

Equipment

Synthesized Sweeper: HP 83620A

Frequency Counter: HP 5328B Option 031 (1300 MHz)

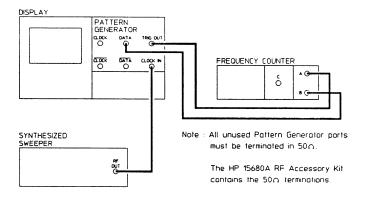
RF Accessory Kit : HP 15680A : HP 70004A Display

Procedure

Verifying the Number of Ones in a PRBS

1. Initialize the Pattern Generator, see page 4-5.

2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.


3. Set the Frequency Counter as follows:

Ratio : B/A

CH A : Slope +, Atten 1, Termination 50Ω CH B : Slope +, Atten 1, Termination 50Ω

Scale (N) : 10

4. Connect the equipment as shown:

5. Press select pattern followed by more 1 of 3 to display more 2 of 3 and LONGEST RUNZERO. Set the PRBS pattern and the longest run of zeros to those listed in the following table. Check that the Frequency Counter readings match those shown. The Frequency Counter scale factor (N) must be set to obtain the required resolution. It may be necessary to adjust the Frequency Counter sensitivity to obtain stable readings.

PRBS 2ⁿ Zero Substitution

PRBS Pattern	Longest Run of Zeros	Counter Reading
2^7 ZEROSUB	7 to 11	32.0 ± 0.1
2^7 ZEROSUB	18 to 19	30.0 ± 0.1
2^7 ZEROSUB	24 to 29	28.0 ± 0.1
2^7 ZEROSUB	34 to 35	26.0 ± 0.1
2^7 ZEROSUB	40 to 43	24.0 ± 0.1
2^7 ZEROSUB	46 to 48	22.0 ± 0.1
2^7 ZEROSUB	55 to 59	20.0 ± 0.1
2^7 ZEROSUB	66 to 68	18.0 ± 0.1
2^7 ZEROSUB	72 to 74	16.0 ± 0.1
2^7 ZEROSUB	78 to 79	14.0 ± 0.1
2^7 ZEROSUB	83 to 87	12.0 ± 0.1
2^7 ZEROSUB	93 to 95	10.0 ± 0.1
2^7 ZEROSUB	99 to 100	8.0 ± 0.1
2^7 ZEROSUB	105 to 109	6.0 ± 0.1
2^7 ZEROSUB	114 to 115	4.0 ±0.1
2^7 ZEROSUB	118 to 119	2.0 ± 0.1
2^7 ZEROSUB	120 to 127	1.0 ± 0.1
2 10 ZEROSUB	10 to 15	256.0 ± 0.1
2^10 ZEROSUB	69 to 71	240.0 ± 0.1
2^10 ZEROSUB	161 to 162	220.0 ± 0.1
2^10 ZEROSUB	237 to 243	200.0 ± 0.1
2^10 ZEROSUB	320 to 322	180.0 ± 0.1
2^10 ZEROSUB	396 to 398	160.0 ± 0.1
2^10 ZEROSUB	471 to 473	140.0 ± 0.1
2^10 ZEROSUB	555 to 558	120.0 ± 0.1
2^10 ZEROSUB	637 to 640	100.0 ± 0.1
2^10 ZEROSUB	709 to 710	80.0 ± 0.1
2^10 ZEROSUB	783 to 789	60.0 ± 0.1
2^10 ZEROSUB	855 to 856	40.0 ± 0.1
2^10 ZEROSUB	925 to 927	20.0 ± 0.1
2^10 ZEROSUB	1010 to 1011	5.0 ± 0.1
2^10 ZEROSUB	1022 to 1023	1.0 ± 0.1

PRBS 2ⁿ Zero Substitution

PRBS Pattern	Longest Run of Zeros	Counter Reading
2^11 ZEROSUB	11 to 18	512.0 ± 0.1
2^11 ZEROSUB	63 to 67	500.0 ± 0.1
2^11 ZEROSUB	237 to 239	450.0 ± 0.1
2^11 ZEROSUB	439 to 441	400.0 ± 0.1
2^11 ZEROSUB	636 to 643	350.0 ± 0.1
2^11 ZEROSUB	841 to 842	300.0 ± 0.1
2^11 ZEROSUB	1065 to 1073	250.0 ± 0.1
2^11 ZEROSUB	1280 to 1281	200.0 ± 0.1
2^11 ZEROSUB	1463 to 1466	150.0 ± 0.1
2^11 ZEROSUB	1655 to 1656	100.0 ± 0.1
2^11 ZEROSUB	1854 to 1855	50.0 ± 0.1
2^11 ZEROSUB	2018 to 2022	10.0 ± 0.1
2^11 ZEROSUB	2038 to 2039	5.0 ± 0.1
2^11 ZEROSUB	2046 to 2047	1.0 ± 0.1
2^13 ZEROSUB	13 to 20	2048.0 ± 0.1
2^13 ZEROSUB	1037 to 1043	1800.0 ± 0.1
2^13 ZEROSUB	1833 to 1836	1600.0 ± 0.1
2^13 ZEROSUB	2604 to 2607	1400.0 ± 0.1
2^13 ZEROSUB	3365 to 3368	1200.0 ± 0.1
2^13 ZEROSUB	4180 to 4183	1000.0 ± 0.1
2^13 ZEROSUB	4946 to 4949	800.0 ± 0.1
2 ¹³ ZEROSUB	5811 to 5812	600.0 ± 0.1
2 ¹³ ZEROSUB	6616 to 6617	400.0 ± 0.1
2 ¹³ ZEROSUB	7399 to 7401	200.0 ± 0.1
2 ¹³ ZEROSUB	7795 to 7796	100.0 ± 0.1
2 ¹³ ZEROSUB	7982 to 7985	50.0 ± 0.1
2^13 ZEROSUB	8148 to 8152	10.0 ± 0.1
2^13 ZEROSUB	8170 to 8174	5.0 ± 0.1
2^13 ZEROSUB	8188 to 8191	1.0 ± 0.1

Error Add

Specifications

Error Add

There are two modes of operation: Single errors on demand; Fixed error ratio of 1 error in 10⁶ bits.

Description

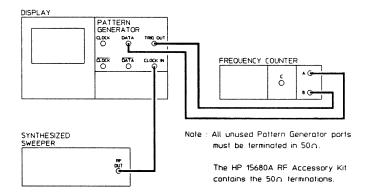
A Frequency Counter is used to verify that errors are added into the transmitted data when the single error add and fixed error rate (1 in 1000000 bits) functions are used.

With the Pattern Generator transmitting an all zeros word, the Frequency Counter reading will increment by one each time the Pattern Generator ERR-ADD SINGLE key is pressed. When the Pattern Generator Fixed Error Rate is selected, there is one errored data bit every 1,000,000 bits. The Frequency Counter is used to verify this by measuring the data to trigger ratio.

Equipment

Synthesized Sweeper: HP 83620A

Frequency Counter: HP 5328B Option 031 (1300 MHz)


RF Accessory Kit : HP 15680A Display : HP 70004A

Procedure

Single Error Add

- 1. Initialize the Pattern Generator module, see page 4-5.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Set the Frequency Counter as follows:

START: A Scale (N): 1 4. Connect the equipment as shown:

- 5. Press edit usr-pat followed by PATTERN 1. Set the pattern to 0000 0000 0000 0000 (see Appendix B.
- 6. Press select pattern followed by user pattern. Press user pattern again then select PATTERN 1.
- 7. Press trg o/p then set TRIGGER PAT CLK to CLK.
- 8. Set the Frequency Counter to START mode with a scaling factor (N)=1.
- 9. Press the Frequency Counter (RESET) key.
- 10. Press err-add then press ERR-ADD SINGLE once. Check that the Frequency Counter reading increments to 1. It may be necessary to adjust the Frequency Counter sensitivity.
- 11. Check that the Frequency Counter reading increments by one each time the ERR-ADD SINGLE key is pressed.
- 12. Repeat steps 9 to 11 with the Synthesized Sweeper set to 1 GHz.

Fixed Error Rate

- 13. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 14. Press more 1 of 2 on the right of the display followed by ERR-ADD 1e-6.
- 15. Set the Counter to Ratio B/A with scaling factor $(N)=10^3$.
- 16. Check that the counter reading is 31250.00 ± 0.01 . It may be necessary to adjust the Frequency Counter sensitivity to obtain stable readings.
- 17. Repeat step 16 with the Synthesized Sweeper set to 1 GHz.

User Selectable Patterns and Memory Backup

Specifications

Variable Length User Test Patterns

Length: 1 to 8192 bits

Resolution: 1 to 255 bits in 1-bit steps; 256 to 8192 bits in 32 bit steps.

Four stores are provided for user patterns. Each store can hold one pattern up 8192 bits long.

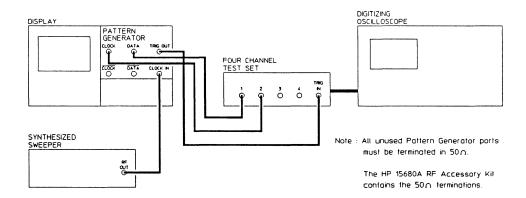
Description

A Digitizing Oscilloscope is used to ensure that the Pattern Generator can produce four predefined *User Selectable Patterns* at the maximum module frequency. A Frequency Counter in the ratio mode verifies that the patterns selected have the correct ratio of *ones* to *Pattern Trigger* in accordance with the rules given in the specifications above. The four patterns used provide maximum stress to the Pattern Generator circuitry. The ratios are checked with clock frequencies of 100 MHz and 1 GHz.

Memory backup is checked by powering down the system and verifying that the four *User Selectable Patterns* are unchanged when the system is powered up.

Equipment

Synthesized Sweeper : HP 83620A Digitizing Oscilloscope : HP 54121T RF Accessory Kit : HP 15680A Display : HP 70004A


Procedure

Checking User Patterns on the Digitizing Oscilloscope

- 1. Initialize the Pattern Generator module, see page 4-5.
- 2. Press edit usr-pat then edit each pattern as follows (see Appendix B):

3. Set the Synthesized Sweeper to the maximum module frequency and 0 dBm.

4. Connect the equipment as shown:

5. Set the Digitizing Oscilloscope for the following parameters:

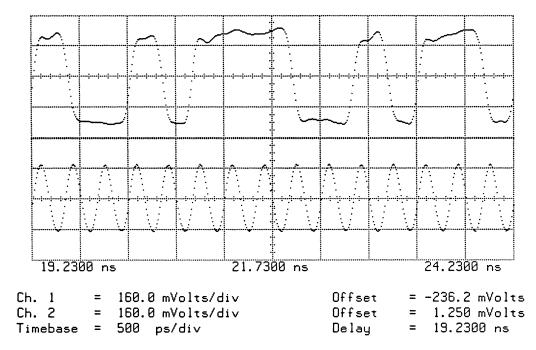
CHAN : Atten X3; CH 1 on; CH 2 on; CH 3,4 off; CH 1,2 Amplitude 160

mV/Div; CH 1 Offset -236 mV; CH 2 Offset 0 mV.

TIMEBASE : Timebase 1 ns/Div; Delay 1 ns; Delay Ref left; Triggered.

TRIGGER : Trig level -500 mV; Slope +ve; Atten X1; HF Sense off; HF Reject

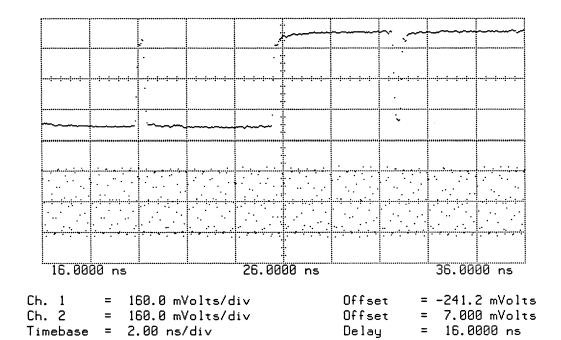
off.


DISPLAY : Display Mode Averaged; Number of Averages 8; Screen Dual;

Graticule grid; Bandwidth 20 GHz.

6. Press select pattern followed by user pattern. Press user pattern again then select PATTERN 1.

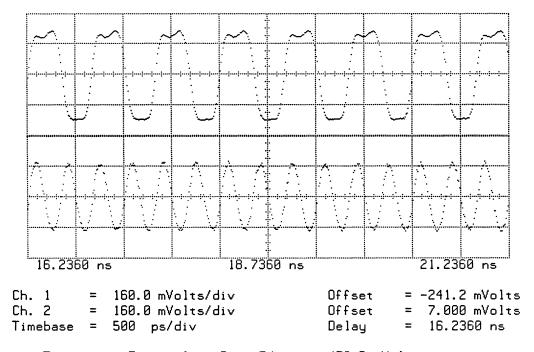
User Selectable Patterns and Memory Backup


7. Adjust the Digitizing Oscilloscope timebase and delay (as required) to obtain a display similar to the following. Ensure the data displayed on Channel 1 agrees with that set up as USER PATTERN 1 (NRZ format) by counting the number of ones and zeros.

Trigger on External at Pos. Edge at -481.0 mVolts

8. Press User Patter followed by PATTERN 2.

9. Adjust the Digitizing Oscilloscope timebase and delay (as required) to obtain a display similar to the following. Ensure the data displayed on Channel 1 agrees with that set up as USER PATTERN 2 (NRZ format) by counting the number of ones and zeros.

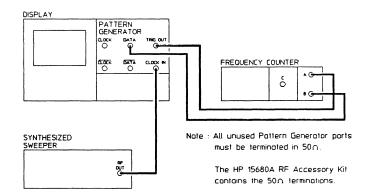


Trigger on External at Pos. Edge at -473.5 mVolts

10. Press User Pattern followed by PATTERN 3.

User Selectable Patterns and Memory Backup

11. Adjust the Digitizing Oscilloscope timebase and delay (as required) to obtain a display similar to the following. Ensure the data displayed on Channel 1 agrees with that set up as USER PATTERN 3 (NRZ format) by counting the number of *ones* and *zeros*.



Trigger on External at Pos. Edge at -473.5 mVolts

- 12. Press User Pattern followed by PATTERN 4.
- 13. The Digitizing Oscilloscope display should be a DC level of typically +1 V.

Checking User Patterns on the Frequency Counter

14. Connect the equipment as shown:

15. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.

4-44 Performance Tests

User Selectable Patterns and Memory Backup

16. Set the Frequency Counter as follows:.

Ratio : B/A

CH A : Slope +, Atten 1, Termination 50Ω CH B : Slope +, Atten 1, Termination 50Ω

Scale (N) : 10

17. Select PATTERN 1 to PATTERN 4 in turn and ensure that the counter readings match those shown. It may be necessary to adjust the counter sensitivity to obtain stable readings.

User Pattern	Counter Reading
PATTERN 1	160.0 ± 0.1
PATTERN 2	3.0 ± 0.1
PATTERN 3	4064.0 ± 0.1
PATTERN 4	No Reading (DC)

- 18. Set the Synthesized Sweeper to 1 GHz at 0 dBm.
- 19. Connect a cable from the Pattern Generator DATA OUTPUT port to Channel C of the Frequency Counter (90 MHz-1.3 GHz port).
- 20. Set the Frequency Counter to Ratio C/A.
- 21. Set the Pattern Generator to PATTERN 1 to PATTERN 4 in turn and ensure that the counter readings match those shown in step 17.

Memory Backup

- 22. Switch off the Display using the LINE switch.
- 23. Wait a few seconds, then switch on the Display.
- 24. Set the Pattern Generator to PATTERN 1 to PATTERN 4 in turn and ensure that the counter readings match those shown in step 17.

Auxiliary Input Test

Specifications

Auxiliary Input

Provides a means of controlling the alternate word changeover or forcing the data output to zero.

Alternate Word Selected: The input signal forces a change between the two 16-bit patterns at the end of either pattern.

Alternate Word Not Select: The input signal forces the data output to zero.

Levels: TTL compatible, active low.

Pulse Width:

Clock Minimum Pulse Wie	
$\geq 500~\mathrm{MHz}$	100 ns
100 to 500 MHz	250 ns
< 100 MHz *	500 ns

Interface: dc coupled.

Description

With PRBS Pattern selected on the Pattern Generator, a Digitizing Oscilloscope is used to verify that a TTL low level (active) at the rear panel AUXILIARY INPUT port inhibits the PRBS pattern at the DATA OUT port (all bits to zero).

With Alternate Word selected, a Frequency Counter is used to verify that a TTL Low level at the rear panel AUXILIARY INPUT port selects WORD 0 and a TTL high selects WORD 1. The TTL signal at the AUXILIARY INPUT port is a pulse set to the minimum width specified for the Clock Frequency in use and is supplied by the Pulse Generator. With WORD 0 set to all ones and WORD 1 set to all zeros the changeover frequency of the Data Out signal will be the same as the Auxiliary Input pulse rate. The Frequency Counter measures these two signals in the RATIO mode ensure results are independent of Pulse Generator frequency and Frequency Counter timebase.

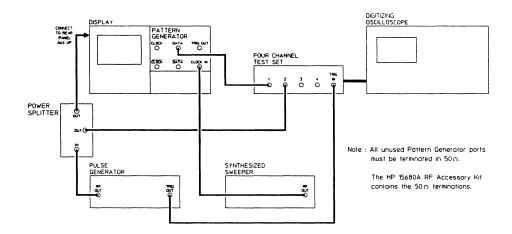
Equipment

Synthesized Sweeper : HP 83620A
Digitizing Oscilloscope : HP 54121T
RF Accessory Kit : HP 15680A
Display : HP 70004A
Frequency Counter : HP 5343A
Pulse Generator : HP 8116A
Power Splitter : HP 11667A

^{*} HP 70845A only

Procedure

Checking Pattern Inhibit


- 1. Initialize the Pattern Generator module, see page 4-5.
- 2. Set the Synthesized Sweeper to 100 MHz at 0 dBm.
- 3. Set the Pulse Generator as follows:

Waveform : Pulse Pulse Width : 250 ns Frequency : 2 MHz

Amplitude : 5 V peak-to-peak

 $Offset \qquad : \ 0 \ V$

4. Connect the equipment as shown in the following diagram:

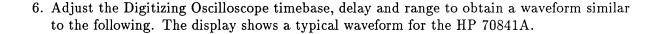
5. Set the Digitizing Oscilloscope for the following parameters:

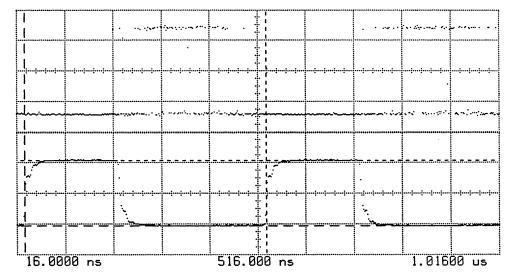
CHAN : Atten X1; CH 1 on; CH 2 on ; CH 3,4 off; CH 1 Amplitude 300

mV/Div; CH 1 Offset -500 mV; CH 2 Amplitude 1.6 V/div; CH 2

Offset 0 V.

TIMEBASE: Timebase 100 ns/Div; Delay 16 ns; Delay Ref left; Triggered.


TRIGGER : Trig level 500 mV; Slope +ve; Atten X1; HF Sense off; HF Reject off.


DISPLAY : Display Mode Averaged; Number of Averages 8; Screen Dual;

Graticule grid; Bandwidth 20 GHz.

Note

The above parameters may be obtained by using the Digitizing Oscilloscope Autoscale function and modifying as required.

300.0 mVolts/div Offset = -422.2 mVoltsCh. 2 1.600 Volts/div Offset 0.000 Volts Timebase Delay 16.0000 ns = 100 ns/div Delta V = 3.4000 Volts Vmarker1 = -1.6750 Volts Vmarker2 1.7250 Volts

Delta T = 501.919 nsStart = 32.5908 ns Stop = 534.509 ns

Trigger on External at Pos. Edge at 99.00 mVolts

7. Ensure that the PRBS pattern is present at the DATA OUT port for the same length of time that the pulse signal is high and is inhibited for the same length of time that the pulse signal is low (active).

Note

Due to delays within the Pattern Generator the AUX IN and Data Output signals will not be coincident.

8. Repeat steps 6 to 7 with the Pulse Generator frequency and pulse width and the Synthesized Sweeper frequency set to the values shown:

Pulse Generator		Synthesized Sweeper
Frequency	Pulse Width	Frequency
2 MHz	$250~\mathrm{ns}$	499 MHz
5 MHz	100 ns	500 MHz
5 MHz	100 ns	1 GHz
*5 MHz	100 ns	$3~\mathrm{GHz}$

^{*}HP 70841A Module only

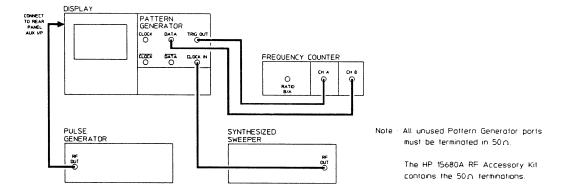
Checking Alternate Word Select

- 9. Set the Synthesized Sweeper to 100 MHz at 0 dBm.
- 10. Set the Pulse Generator as follows:

Waveform : Pulse Pulse Width : 250 ns Frequency : 2 MHz

Amplitude : 5 V peak-to-peak

Offset : 0 V


11. Set the Frequency Counter as follows:

Ratio: B/A

CH A : Slope +, Atten 1, Termination 50Ω CH B : Slope +, Atten 1, Termination 50Ω

Scale (N) : 10

12. Connect the equipment as follows:

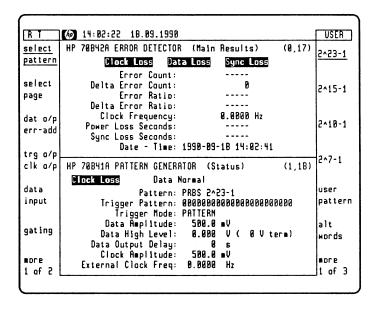
- 13. Press select pattern followed by alt word .Set WORD 0 to 111111111 11111111 and WORD 1 to 00000000 00000000.
- 14. Adjust the Frequency Counter CH A and B sensitivity controls for a stable reading of 1.0 ±0.1.
- 15. Repeat steps 14 with the Pulse Generator frequency and pulse width and the Synthesized Sweeper frequency set to the values shown:

Pulse Generator		Synthesized Sweeper
Frequency	Pulse Width	Frequency
2 MHz	$250~\mathrm{ns}$	499 MHz
$5~\mathrm{MHz}$	100 ns	500 MHz
5 MHz	100 ns	1 GHz
*5 MHz	100 ns	3 GHz

^{*}HP 70841A Module only

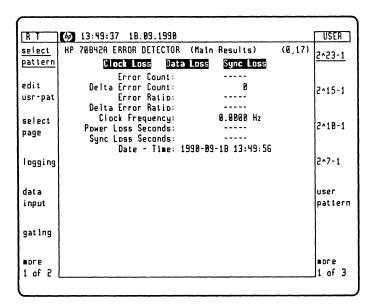
Error Detector Performance Tests

These tests (on pages 4-51 to 4-90) ensure that the HP 70846A 0.05-1 GHz and HP 70842A 0.1 - 3 GHz Error Detector modules meet specification. The Error Detector performance checks require the system to be configured either master/master or master/slave prior to performance testing, see the *Preliminary Procedures* on the following pages.

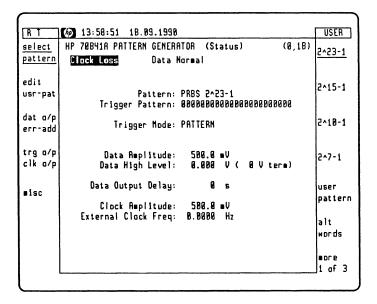

Test Frequencies

The terms minimum and maximum are used to define test frequencies in the performance tests. These frequencies are module dependent, see the following table:

Module	Minimum Frequency	Maximum Frequency
HP 70842A	100 MHz	3 GHz
HP 70845A	50 MHz	1 GHz


Error Detector Module Preliminary Setup (Master/Slave)

- 1. Interconnect the HP-MSIB IN and OUT ports on the HP 70004A Display and the HP 70001A Mainframe, see page 2-14.
- 2. Note the Error Detector module *HP-MSIB address* (row and column), it must be returned to this setting after its performance has been verified.
- 3. Set the Error Detector module row address to 0 and column address to 17, see page 2-8.
- 4. Set the Pattern Generator module row address to 1 and the column address to 18, see page 2-9.
- 5. Plug the Error Detector module (to be tested) into the Display and the Pattern Generator module into the Mainframe.
- 6. Power-on the Display and Mainframe (system selftest occurs at power-on, takes approximately 15 seconds complete).
- 7. Press DISPLAY followed by NEXT INST to establish a communication link between the Error Detector module and the Display.
- 8. Press (INST PRESET) to initialize the Error Detector and Pattern Generator modules (to their preset or default settings). A typical display is shown below:


Preliminary Setup (Master/Master)

- 1. Interconnect the *HP-MSIB IN* and *OUT* ports on the HP 70004A Display and the HP 70001A Mainframe, see page 2-14.
- 2. Note the Error Detector module *HP-MSIB address* (row and column), it must be returned to this setting after its performance has been verified.
- 3. Set the Error Detector module row address to 0 and column address to 17, see page 2-8.
- 4. Set the Pattern Generator module row address to 0 and the column address to 18, see page 2-9.
- 5. Plug the Error Detector module (to be tested) into the Display and the Pattern Generator module into the Mainframe.
- 6. Power-on the Display and Mainframe (system selftest occurs at power-on, takes approximately 15 seconds complete).
- 7. Press DISPLAY followed by NEXT INST until the Error Detector parameters appear on the display.
- 8. Initialize the Error Detector module to its preset or default settings, by pressing (INST PRESET). A typical Error Detector display is shown below:

9. Press DISPLAY followed by NEXT INST to establish a communication link between the Pattern Generator module and the Display - the Pattern Generator parameters should appear on the display.

10. Initialize the Pattern Generator module to its preset or default settings, by pressing (INST PRESET). A typical display is shown below:

Clock Input Levels

Specifications

Waveform: Compatible with the following: Clock Sources: HP 70322A or HP 70320A. Signal Generators: HP 8665A or HP 8644A.

Pattern Generator Modules: HP 70841A or HP 70845A.

Amplitude: ±4 dBm.

Return Loss: Typically > 10 dB over the operating range.

Impedance: 50Ω nominal. Interface: ac coupled.

•

Connector: N-tpye female.

Alternative clock Sources: Other clock sources offering a similar performance to those listed

under Waveform can be used provided they meet the following:

Noise: SSB broadband noise floor, offsets > 10 MHz from the carrier in the range 10 MHz to

4 GHz:

Carrier Frequency	Noise floor
< 300 MHz	$< -140 \; \mathrm{dBc/Hz}$
> 300 MHz	< -130 dBc/Hz

Maximum Power from 50Ω Source: 15 dBm.

Description

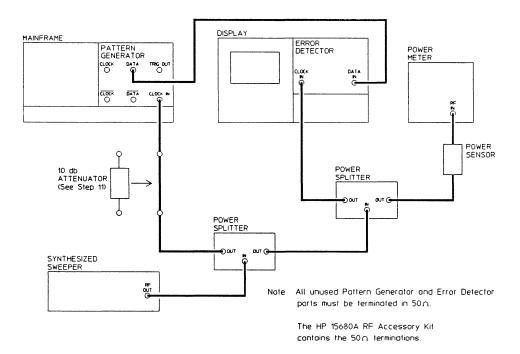
This test ensures that the Error Detector can synchronize to a worst-case test pattern with the *CLOCK IN* signal set to minimum and maximum specified amplitudes. The Clock Loss alarm functions on the Error Detector are also checked in this test.

The CLOCK IN signal for the Pattern Generator is provided by a Synthesized Sweeper via a Power Splitter and for the Error Detector via another Power Splitter with the Power Meter used to measure the signal level at the Error Detector CLOCK IN port. This level is first adjusted to the minimum clock input level specified - the Error Detector is then monitored to ensure correct alignment across the full frequency range with a specific User Selectable Pattern set up on both the Pattern Generator and Error Detector. The clock polarity is inverted as required to achieve this. The above test is repeated with the Synthesized Sweeper amplitude set to the maximum level specified for the Error detector CLOCK IN port. The Clock Loss alarms are verified by reducing the Synthesized Sweeper level until these alarms are displayed on the Error Detector. The level at which this occurs is noted.

Equipment

Synthesized Sweeper: HP 83620A RF Accessory Kit: HP 15680A

Pattern Generator : HP 70841A or HP 70845A


Display : HP 70004A
Power Meter : HP 436A
Power Sensor : HP 8482A

Power Splitter : HP 11667A (2 required) Attenuator : HP 8491A (option 010)

Procedure

Pattern Alignment

- 1. Initialize the Error Detector and Pattern Generator as a master/slave system, see page 4-51.
- 2. Connect the equipment as shown:

Note

Use only cables from the RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

3. Set the Power Meter to read dBm (100% CAL factor).

Note

The Power Sensor should be calibrated using the Power Meter internal Power Reference. Refer to the Power Meter Operating Manual for details.

Clock Input Levels

- 4. Set the Synthesized Sweeper to the minimum module frequency and adjust the level for -4 dBm as read on the Power Meter.
- 6. Press more 2 of 2 on the left of the display then press select pattern. Press user pattern twice then select USER PATTN 1.
- 7. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.
- 8. Sweep the Synthesized Sweeper slowly between the minimum and maximum module frequency (maintain -4 dBm reading on the Power Meter) and monitor for Clock Loss, Data Loss, Sync Loss or Errors alarms. If a Sync Loss or Errors alarm occurs at any frequency, select data input then press CLKEDGE NEG. Check for pattern re-alignment, no alarm message on the display and no module alarm indicators.
- 9. Return the Synthesized Sweeper frequency to the minimum module frequency.

Checking Clock Loss Alarms

10. Reduce the Synthesized Sweeper level until the CLK LOSS alarm indicator on the Error Detector module is lit. The Clk Loss alarm message should appear on the display. Typically, Clock Loss alarms occur below -10 dBm. Confirm this level on the Power Meter.

Checking the Maximum Level at the Error Detector CLOCK IN Port

- 11. Insert the 10 dB Fixed Attenuator between the Power Splitter output and the Pattern Generator CLOCK IN port.
- 12. Increase the Synthesized Sweeper amplitude to obtain a reading of +4 dBm on the Power Meter.
- 13. Sweep the Synthesized Sweeper slowly between the minimum and maximum module frequency (maintain the +4dBm reading on the Power Meter) and monitor for Clock Loss, Data Loss, Sync Loss or Errors alarms. If a Sync Loss or Errors alarm ocur at any frequency, select data input then press CLKEDGE NEG. Check for pattern re-alignment, no alarm message on the display and no module alarm indicators.

PRBS 2ⁿ⁻¹ Pattern Synchronization, Error Detect and Audible Indicator

Specifications

PRBS Test Patterns $2^{23}-1$, polynomial $D^{23}+D^{18}+1=0$, inverted (as in CCITT Rec O.151). $2^{15}-1$, polynomial $D^{15}+D^{14}+1=0$, inverted (as in CCITT RecO.151). $2^{10}-1$, polynomial $D^{10}+D^7+1=0$, inverted. 2^7-1 , polynomial $D^7+D^6+1=0$, inverted.

Error Measurements

The error detector counts bit errors by comparing the incoming data bit-by-bit with the internally-generated reference pattern. All measurements run during the gating periods as described with the exception of Delta Error Count and Delta Error Ratio. These measurements run continuously to facilitate user adjustments for minimizing errors.

Error Count: The total number of errors during the gating period.

Delta Error Count: The number of errors in successive decisecond intervals.

Error Ratio: The ratio of counted errors to the number of bits in the selected gating period.

Delta Error Ratio: The ratio of counted errors to the number of bits in successive decisecond intervals.

Errored Intervals: Time intervals during which one or more errors occurred. These intervals are errored seconds, deciseconds, centiseconds or milliseconds.

Error Free Intervals: Time intervals of seconds, deciseconds, centiseconds or milliseconds, during which no errors occurred.

Description

This test ensures that the Error Detector can synchronize to 2^7-1 , 2^10-1 , 2^15-1 and 2^23-1 PRBS patterns and can also count *single* and *fixed rate* bit errors on each pattern.

A Pattern Generator is set to transmit each pattern - the Error Detector is monitored to ensure correct alignment on each pattern across the full frequency range. The active clock edge on the Error Detector is inverted as required to achieve this.

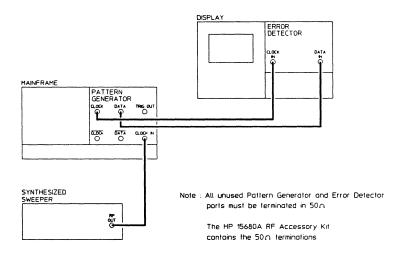
Single errors are then added to each transmitted pattern - the Error Detector is checked to ensure these errors are detected. Finally, the Pattern Generator is set to its fixed error rate - the Error Detector is checked for the correct error rate and result analysis on each pattern. Single and fixed error rates are verified at three discrete frequencies.

The audible indicator is verified by listening for a beep each time errors are added.

PRBS 2^n-1 Pattern Synchronization, Error Detect and Audible Indicator

Equipment

Synthesized Sweeper: HP 83620A RF Accessory Kit: HP 15680A


Pattern Generator : HP 70841A or HP 70845A

Display : HP 70004A

Procedure

Pattern Alignment

- 1. Initialize the Pattern Generator and Error Detector as a master/slave system, see page 4-51.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Connect the equipment as shown:

Note

Use only cables from the HP 15680A RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.
- 5. Sweep the Synthesized Sweeper slowly between the mimimum and maximum module frequencies and ensure no alarm indicators or messages occur.
 - If a sync loss or errors alarm occurs at any frequency, select data input, then press CLKEDGE NEG. Check for pattern re-alignment, no alarm message on the display and no module alarm indicators.
- 6. Repeat step 5 with select pattern set to 2^15-1, 2^10-1 and 2^7-1 respectively.
- 7. Return the Synthesized Sweeper frequency to the minimum module frequency then select CLKEDGE POS on the display.

Single Error Add and Audible Error Indicator

- 8. Press more 1 of 2 then misc on the left of the display.
- 9. Select BEEP ON ERROR to activate the audible error indicator.
- 10. Press more 2 of 2 followed by gating, then on the left of the display, select MANUAL UNTIMED.
- 11. Press RUN GATING (ensure the GATING indicator on the Error Detector module lights).
- 12. Select err-add then press ERR-ADD SINGLE once. An audible beep should be heard.
- 13. Ensure that the displayed Error Count is 1.
- 14. Check that the Error Count increments by 1 count each time ERR-ADD SINGLE is pressed. The Errors alarm message and indicator should flash momentarily and the Beeper should sound each time an error is added.
- 15. Select gating then press STOP GATING, RUN GATING and STOP GATING in sequence to reset the error count to zero.
- 16. Repeat steps 11 to 15 with select pattern set to 2^10-1, 2^15-1 and 2^23-1 respectively.
- 17. Return select pattern to 2^7-1 then repeat steps 11 to 16 with the Synthesized Sweeper set to the minimum and maximum module frequency.

Note

If a Sync Loss alarm occurs at this frequency, press data input then select CLKEDGE NEG. Ensure that the alarm disappears.

18. Return the Synthesized Sweeper to the minimum module frequency then select CLKEDGE POS on the display. Ensure all alarms disappear.

Fixed Error Add Rate

- 19. Press select page then MAIN RESULTS to display Error Count, Delta Error Count, Error Ratio and Delta Error Ratio.
- 20. Select err-add followed by more 1 of 2 on the right of the display then ERR-ADD 1e-6 (one error in 10⁶ bits).
- 21. Ensure that the Errors alarm message is displayed and that the ERRORS alarm indicator is lit. A continuous beeping should be audible.
- 22. Press gating then select TIMED SINGLE. Set the GATING PERIOD to 5 seconds using the numeric keys.
- 23. Press gating then select RUN GATING (ensure that the Error Detector GATING indicator lights).

PRBS 2ⁿ⁻¹ Pattern Synchronization, Error Detect and Audible Indicator

- 24. Wait for gating to finish then note the Error Ratio and Delta Error Ratio readings on the display. These will be typically 1.000e-06.
- 25. Repeat steps 23 and 24 with select pattern set to 2^15-1, 2^10-1 and 2^7-1 respectively. The results will be unchanged.
- 26. Return the pattern to 2²3-1.
- 27. Repeat steps 23 to 26 with the Frequency Synthesizer set to 1 GHz.

Note

If a Sync Loss alarm occurs at this frequency, press data input then select CLKEDGE NEG. Ensure that the alarm disappears.

HP 70842A Module Only

28. Repeat steps 23 to 26 with the Frequency Synthesizer set to 3 GHz.

Note

If a Sync Loss alarm occurs at this frequency, press data input then select CLKEDGE NEG. Ensure that that the alarms disappear.

Specifications

Variable Mark Density Test Patterns:

 2^{13} , polynomial $D^{13}+D^{12}+1=0$ 2^{11} , polynomial $D^{11}+D^{9}+1=0$ 2^{10} , polynomial $D^{10}+D^{7}+1=0$ 2^{7} , polynomial $D^{7}+D^{6}+1=0$

In the above patterns an extra zero is added to extend the longest run of zeros by one.

Error Measurements

The error detector counts bit errors by comparing the incoming data bit-by-bit with the internally-generated reference pattern. All measurements run during the gating periods as described with the exception of Delta Error Count and Delta Error Ratio. These measurements run continuously to facilitate user adjustments for minimizing errors.

Error Count: The total number of errors during the gating period.

Delta Error Count: The number of errors in successive decisecond intervals.

Error Ratio: The ratio of counted errors to the number of bits in the selected gating period.

Delta Error Ratio: The ratio of counted errors to the number of bits in successive decisecond intervals.

Errored Intervals: Time intervals during which one or more errors occurred. These intervals are errored seconds, deciseconds, centiseconds or milliseconds.

Error Free Intervals: Time intervals of seconds, deciseconds, centiseconds or milliseconds, during which no errors occurred.

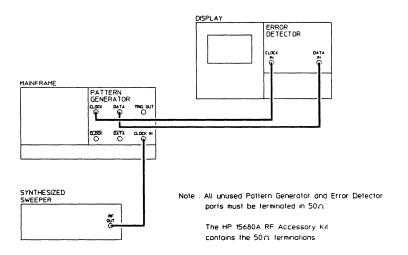
Description

This test ensures that the Error Detector can synchronize to 2⁷, 2¹⁰, 2¹¹ and 2¹³ PRBS patterns and can also count *single* and *fixed rate* bit errors on each pattern.

A Pattern Generator is set to transmit each pattern - the Error Detector is monitor to ensure correct alignment on each pattern across the full frequency range. The active clock edge on the Error Detector is inverted as required to achieve this.

Single errors are then added to each transmitted pattern - the Error Detector is checked to ensure these are detected. Finally, the Pattern Generator is set to its fixed error rate of 1×10^{-6} - The Error Detector is checked for the correct error rate and results analysis. Single and fixed error rates are verified at three discrete frequencies.

The internal memory backup is verified by cycling the power and by ensuring that the displayed clock time and date are still valid. With gating active the power is cycled - the Error Detector display is checked to ensure that the Power Loss Seconds has been correctly recorded (the time during which the measurement is inactive).


Equipment

Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Pattern Generator : HP70841A Display : HP 70004A

Procedure

Pattern Alignment

- 1. Initialize the Errror Detector and Pattern Generator as a master/slave system, see page 4-51.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Connect the equipment as shown;

Note

Use only cables from the HP 15680A RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Press select pattern then use more 1 of 3 until more 3 of 3 is displayed then select 2⁷7 MARKDEN.
- 5. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* and *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss and Errors alarm messages are not on the display.
- 6. Sweep the Synthesized Sweeper slowly between the minimum and maximum module frequencies and monitor the module and display for Clock Loss, Data Loss, Sync Loss or Errors alarms.

If Sync Loss or Errors indicators appear at any frequency, select data input, then press CLKEDGE NEG. Wait for resync to occur (up to 30 seconds) then check for pattern realignment, no alarm messages on the display and no module alarm indicators.

- 7. Repeat step 6 with select pattern set to 2^10 MARKDEN, 2^11 MARKDEN, and 2^13 MARKDEN respectively.
- 8. Return the Synthesized Sweeper frequency to the minimum module frequency then select CLKEDGE POS on the display.

Single Error Add

- 9. Press gating then select MANUAL UNTIMED.
- 10. Press RUN GATING.
- 11. Select err-add then press ERR-ADD SINGLE.
- 12. Ensure that the display Error Count is 1.
- 13. Check that the Error Count increments by 1 count each time ERR-ADD SINGLE is pressed. The Errors alarm message and indicator should flash momentarily each time an error is added.
- 14. Select gating then press STOP GATING, RUN GATING and STOP GATING in sequence to reset the error count to zero.
- 15. Repeat steps 10 to 14 with select pattern set to 2^11 MARKDEN, 2^10 MARKDEN and 2^7 MARKDEN respectively.
- 16. Return select pattern to 2¹³ MARKDEN then repeat steps 10 to 15 with the Synthesized Sweeper set to the maximum module frequency.

Note

If a Sync Loss alarm occurs at this frequency, select data input then press CLKEDGE NEG. Wait for resync to occur (up to 30 seconds).

17. Return the Synthesized Sweeper frequency to the minimum module frequency, then select CLKEDGE POS on the display, ensure that all alarms disappear.

Fixed Error Add Rate

- 18. Press select page then MAIN RESULTS to display Error Count, Delta Error Count, Error Ratio and Delta Error Ratio.
- 19. Select err-add then press more 1 of 2 on the right of the display followed by ERR-ADD 1e-6 (one error in 10^6 bits).
- 20. Ensure that the Errors alarm message is displayed and that the ERRORS alarm indicator is lit.
- 21. Press gating then select TIMED SINGLE. Set the GATING PERIOD to 5 seconds using the numeric keys.
- 22. Press gating then select RUN GATING (ensure the Error Detector GATING indicator is lit).

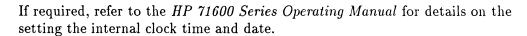
- 23. Wait for gating to finish then note the Error Ratio and Delta Error Ratio readings on the display. These will be typically 1.00e-6.
- 24. Repeat steps 22 and 23 with select pattern set to 2^10 MARKDEN, 2^11 MARKDEN and 2^13 MARKDEN respectively. The results will be unchanged.

Note

do not select RUN GATING until resync has occurred (up to 30 seconds).

- 25. Return the pattern to 27 MARKDEN.
- 26. Repeat steps 22 to 25 with the Synthesized Sweeper set to 1 GHz.

Note



If a Sync Loss alarm occurs at this frequency, select data input then press CLKEDGE NEG. Wait for the resync to occur (up to 30 seconds), ensure that all alarms disappear.

Power Loss Indicator and Internal Memory Backup

27. Note the time and date shown on the display.

Note

- 28. Press gating followed by RUN GATING then switch off the Display using the LINE switch.
- 29. Switch on the Display then wait for the time and date to appear check that the internal clock has been operating during power down.
- 30. Check the Power Loss Seconds on the display.

PRBS 2ⁿ with Variable Mark Density

Specifications

Variable Mark Density Test Patterns:

```
2^{13}, polynomial D^{13}+D^{12}+1=0

2^{11}, polynomial D^{11}+D^{9}+1=0

2^{10}, polynomial D^{10}+D^{7}+1=0

2^{7}, polynomial D^{7}+D^{6}+1=0
```

In the above patterns an extra zero is added to extend the longest run of zeros by one.

The ratio of ones to total bits in the above patterns can be set to 1/8, 1/4, 1/2, 3/4 and 7/8.

Description

This test ensures that the Error Detector can synchronize to 2⁷7, 2¹⁰, 2¹¹ and 2¹³ PRBS patterns with mark densities of 1/8, 1/4, 1/2, 3/4 and 7/8.

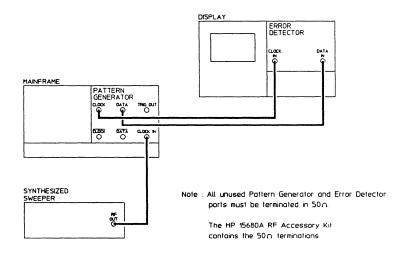
A Pattern Generator is set to transmit each pattern - the Error Detector is monitored to ensure correct alignment across the full frequency range. The active clock edge on the Error Detector is inverted as required to achieve this.

The Error Detector Data Threshold (the level at which the 0 to 1 transition occurs) is then adjusted manually to optimize transition point for the chosen transmit levels. The mark density can now be increased from minimum to maximum - the Error Detector alignment is verified at each mark density setting by adding single errors.

This last step is repeated at each PRBS and at three discrete frequencies.

Equipment

Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Pattern Generator : HP 70841A Display : HP 70004A


Procedure

Pattern Alignment

- 1. Initialize the Error Detector and Pattern Generator as a master/slave system, see page 4-51.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.

PRBS 2ⁿ with Variable Mark Density

3. Connect the equipment as shown:

Note

Use only cables from the HP 15680A RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Press select pattern then use more 1 of 3 to display more 3 of 3 then press 2⁷7 MARKDEN.
- 5. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.

Setting the 0/1 Threshold Manually

Note

The Error Detector sync time increases with longer patterns (higher numbers). The manual 0/1 threshold should always be set on the shortest pattern (2^7) . Sync time on this pattern will be <2 seconds.

- 6. Press data input then set 0/1 THR AUTOMAN to MAN.
- 7. Press 0/1 THRSHLD then set the threshold to 1.00 V using the numeric keys.
- 8. Check that there are Sync Loss and Errors alarms.
- 9. Decrease the threshold voltage using the rotating knob until the Sync Loss and Errors alarms disappear. Note the voltage (V1) at which this occurs.
- 10. Continue to decrease the threshold voltage until the Sync Loss and Errors alarms occur again. Note the voltage (V2) at which this occurs.
- 11. Calculate (V1+V2)/2 then use the numeric keys to enter this value as the new threshold voltage. There must be no Sync Loss and Errors alarms.

- Single Errors with Variable Mark Density
- 12. Press select pattern then use more 1 of 3 to display more 3 of 3 then select MARK DENSITY followed by 1/8, finally press EXIT.
- 13. Press gating then select MANUAL UNTIMED.
- 14. Press RUN GATING.
- 15. Select err-add then press ERR-ADD SINGLE once.
- 16. Ensure that the displayed Error Count is 1.
- 17. Check that the Error Count increments by 1 count each time ERR-ADD SINGLE is pressed. The Errors alarm message and indicator should flash momentarily each time an error is added.
- 18. Select gating then press STOP GATING, RUN GATING and STOP GATING in sequence to reset the error count to zero.
- 19. Repeat steps 12 to 18 with the MARK DENSITY set to 1/4, 3/4 and 7/8 respectively.
- 20. Repeat steps 12 to 19 with select pattern set to 2~10 MARKDEN, 2~11 MARKDEN and 2¹³ MARKDEN respectively.

Note

Do not press RUN GATING until resync has occurred (up to 30 seconds).

- 21. Return the pattern to 2⁷ MARKDEN.
- 22. Repeat steps 12 to 21 with the Synthesized Sweeper set to the maximum module frequency.

Note

If a Sync Loss alarms occurs at this frequency, select data input then press CLKEDGE NEG. Wait for resync to occur - ensure all alarms are off.

PRBS 2ⁿ Pattern with Zero Substitution

Specifications

Zero Substitution Test Patterns:

```
2^{13}, polynomial D^{13}+D^{12}+1=0

2^{11}, polynomial D^{11}+D^{9}+1=0

2^{10}, polynomial D^{10}+D^{7}+1=0

2^{7}, polynomial D^{7}+D^{6}+1=0
```

In the above patterns an extra zero is added to extend the longest run of zeros by one.

Zeros can be substituted for data to extend the longest run of zeros in the above patterns. The longest run can be extended to the pattern length, minus one. The bit after the substituted zeros is set to 1.

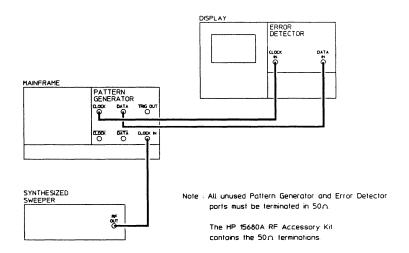
Description

This test ensures that the Error Detector can synchronize to a 2⁷, 2¹⁰, 2¹¹ and 2¹³ pattern with extended runs of zeros.

A Pattern Generator is set to transmit each pattern - the Error Detector is monitored to ensure correct alignment across the full frequency range. The active clock edge on the Error DEtector is inverted as required to achieve this.

The Error Detector Threshold (the level at which 0 to 1 transition occurs) is then adjusted manually to optimize the transition point for the chosen transmit level. Zeros can now be substituted into the pattern by increasing the *longest run of zeros* from minimum to maximum and verifying Error Detector alignment at selected *longest run of zeros*. This last step is repeated at each PRBS and at three discrete frequencies.

Equipment


Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Pattern Generator : HP 70841A Display : HP 70004A

Procedure

Pattern Alignment

- 1. Initialize the Error Detector and Pattern Generator as a master/slave system, see page 4-51.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.

3. Connect the equipment as shown:

Note

Use only cables from the HP 15680A RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Press select pattern then press more 1 of 3 to display more 2 of 3 then select 2^7 ZEROSUB.
- 5. Ensure that the Error Detector CLK LOSS, DATA LOSS, SYNC LOSS or ERRORS alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.

Fixed Zero Substitution Alignment

- 6. Press data input then more 1 of 2 (on the right menu) followed by CLK-DAT ALIGN and wait for Clock to Data adignment to complete.
- 7. Press select pattern then use more 1 of 3 to display more 2 of 3 then select 2^7 ZEROSUB.

PRBS 2ⁿ Pattern with Zero Substitution

8. Select LONGEST RUNZERO then select the values listed in the following table using the numeric keys. Ensure that synchronization occurs within the resync time given in the table. There should be no Clock Loss, Sync Loss, Data Loss or Errors alarms after alignment has occurred. Return the LONGEST RUN ZERO to its lowest value when complete.

Pattern	Longest Run of Zeros	Resync Time
2^7 ZEROSUB	7, 10, 20, 30, 40, 50, 60, 70, 80, 82, 84, 86, 88, 89,90	1.0 s
2^10 ZEROSUB	10, 100, 200, 300, 400, 500, 600, 700, 750, 770, 790, 794, 795	$5.0~\mathrm{s}$
2^11 ZEROSUB	11, 200, 400, 600, 800, 1000, 1200, 1400, 1550, 1590, 1595, 1599, 1600	8.0 s
2^13 ZEROSUB	13, 800, 2400, 4000, 5600, 6320, 6360, 6376, 6398, 6400	30.0 s

9. Repeat steps 4 to 8 with the Synthesizer set to the maximum module frequency.

User Selectable Pattern Synchronization and Error Detect

Specifications

Variable Length User Test Patterns

Length: 1 to 8192 bits

Resolution: 1 to 255 bits in 1-bit steps; 256 to 8192 bits in 32 bit steps.

Fours stores are provided for user patterns. Each store can hold one pattern up 8192 bits long.

Error Measurements

The error detector counts bit errors by comparing the incoming data bit-by-bit with the internally-generated reference pattern. All measurements run during the gating periods as described with the exception of Delta Error Count and Delta Error Ratio. These measurements run continuously to facilitate user adjustments for minimizing errors.

Error Count: The total number of errors during the gating period.

Delta Error Count: The number of errors in successive decisecond intervals.

Error Ratio: The ratio of counted errors to the number of bits in the selected gating period.

Delta Error Ratio: The ratio of counted errors to the number of bits in successive decisecond intervals.

Errored Intervals: Time intervals during which one or more errors occurred. These intervals are errored seconds, deciseconds, centiseconds or milliseconds.

Error Free Intervals: Time intervals of seconds, deciseconds, centiseconds or milliseconds, during which no errors occurred.

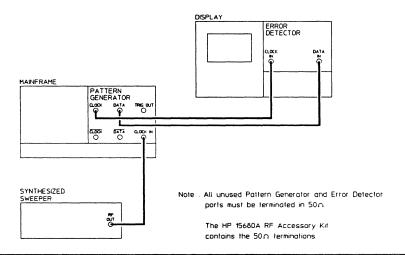
Description

This test ensures that the Error Detector can synchronize to and detect single and fixed errors in *User Selectable Patterns*. The test patterns chosen will provide worst case alignment conditions for the Error Detector circuitry.

A Pattern Generator is set to transmit each of the four preset patterns - the Error Detector is monitored to ensure correct alignment across the full frequency range. The active clock edge on the Error Detector is inverted as required to achieve this.

Single errors are then added to each transmitted pattern - the Error Detector is checked to ensure these errors are detected. The Pattern Generator is next set to its fixed error rate of 1×10^{-6} - the Error Detector is checked for the correct error rate and result analysis. Single and fixed error rates are verified at three discrete frequencies.

User Selectable Pattern Synchronization and Error Detect


Equipment

Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Pattern Generator : HP 70841A Display : HP 70004A

Procedure

Pattern Alignment

- 1. Initialize the Error Detector and Pattern Generator as a master/slave system, see page 4-51.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Connect the equipment as shown:

Note

Use only cables from the RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Press more 1 of 2 followed by edit usr-pat then set up the user patterns as listed in the following table (see *Appendix B*).
 - PATTERN 1 1001 0111 0010 110 (pattern length 15 bits)
 - - 0000 0000 0000 (pattern length 64 bits)
 - PATTERN 3 1010 (repeat for pattern length of 255 bits)
 - PATTERN 4 1 (pattern length of 1 bit)
- 5. Press more 2 of 2 on the left of the display then press select pattern. Press user pattern twice then select USER PATTN 1 to make User Pattern 1 active.

4-72 Performance Tests

User Selectable Pattern Synchronization and Error Detect

- 6. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.
- 7. Sweep the Synthesized Sweeper slowly between the minimum and maximum module frequencies and monitor the module and display for clock loss, data loss, sync loss or errors alarms. If a sync loss or errors alarm occurs at any frequency, select data input, then press CLKEDGE NEG. Check for pattern re-alignment, no alarm message on the display and no module alarm indicators.
- 8. Return the Synthesized Sweeper to the minimum module frequency.

Single Error Add

- 9. Select gating then press MANUAL UNTIMED.
- 10. Select RUN GATING.
- 11. Select err-add then press ERR-ADD SINGLE once.
- 12. Ensure that the displayed Error Count is 1.
- 13. Check that the Error Count increments by 1 count each time ERR-ADD SINGLE is pressed. The Errors alarm message and indicator should flash momentarily each time an error is added.
- 14. Select gating then press STOP GATING, RUN GATING then STOP GATING in sequence to reset the error count to zero.
- 15. Repeat steps 10 to 14 with the synthesized Sweeper set to the maximum module frequency. If a Sync Loss alarm occurs at this frequency then press data input followed by CLKEDGE NEG.
- 16. Return the Synthesized Sweeper to the minimum module frequency.
- 17. Repeat steps 5 to 16 with USER PATTN 2, USER PATTN 3 and USER PATTN 4 as the active pattern.

Data Input Range (Automatic 0/1 Threshold)

Specifications

Data Sampling Clock Edge: Selectable rising or falling edge.

Termination Voltage: Selectable 0 V or -2 V nominal.

Level: Min, 0.5 V p-p; Max, 2.0 V p-p nominal.

Offset (nominal):

	Termination	
	50Ω to 0 V	50Ω to -2 V
Maximum Input Voltage	+1 V	0 V
Minimum Input Voltage	-4 V	-4 V

0/1 Threshold: The electrical interface allows for a range of input amplitudes and dc offsets. The 0/1 threshold is set using one of three modes:

Automatic Track: Tracks the mean dc level of the input signal. The measured threshold is displayed.

Automatic Center: The Error Detector sets the 0/1 threshold midway between two points, top and bottom of the eye where the bit error ratio is equal to the selectable threshold. The eye height is calculated and displayed.

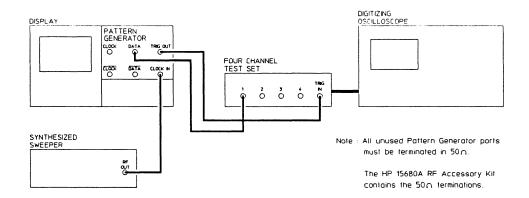
Manual: Sets the 0/1 threshold manually.

Range - +1 to -4 V nominal. Resolution - 10 mV nominal.

Description

This test ensures that the Error Detector can synchronize to a pattern with amplitude and offset within the range specified for the Error Detector Data Input.

A Pattern Generator is used to transmit the required levels and offsets. The minimum specified level is first verified on an Oscilloscope with a 1100 1100 User Pattern - the Error Detector is monitored to ensure correct alignment across the full frequency spectrum with this minimum level. The Pattern Generator is set to transmit 2^23-1 PRBS with Data amplitude and offset (data Hi level) set to tabulated values. - the Error Detector is monitored to ensure correct alignment across the full frequency spectrum in each case. The pattern is chosen to satisfy requirements on synchronization and mark:space density.


Equipment

Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Digitizing Oscilloscope : HP 54121T Four Channel Test Set : HP 54121A Pattern Generator : HP 70841A Display : HP 70004A

Procedure

Pattern Alignment with Minimum Data Amplitude

- 1. Initialize the Error Detector and Pattern Generator as a master/slave system, see page 4-51.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Connect the equipment as shown;

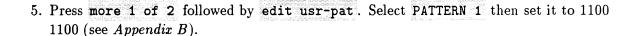
4. Set the Digitizing Oscilloscope for the following parameters:

CHAN: Atten X1; CH1 on; CH2,3,4 off; CH 1 Amplitude 100 mV/Div;

Offset 750 mV.

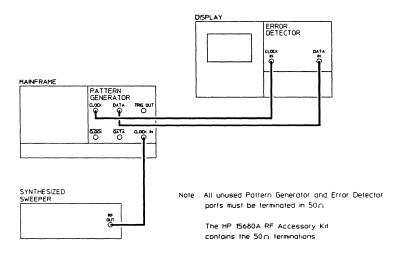
TIMEBASE : Timebase 5 ns/Div; Delay 16 ns; Delay ref left; Triggered

TRIGGER: Trig Level -500 mV; Slope +ve; Atten X1; HF Sense off; HF Reject


off

DISPLAY : Display Mode Averaged; Number of Averages 8; Screen Single

Bandwith 20 GHz.


Note

The above parameters may be obtained by using the Digitizing Oscilloscope Autoscale function and modifying as required.

Data Input Range (Automatic 0/1 Threshold)

- 6. Press more 2 of 2 on the left of the display followed by select pattern and USER PATTN 1.
- 7. Press dat o/p followed by DATA AMPTD. Set the amplitude to 0.5 V using the numeric keys. Press DATA HI-LEVEL. Set the Hi level to 1.0 V using the numeric keys.
- 8. Adjust the Digitizing Oscilloscope delay to position the data pulse at the center of the display.
- 9. Use the Digitizing Oscilloscope MEASUREMENT function to measure the amplitude of the data pulse. If necessary adjust the Pattern Generator DATA AMPLTD until the amplitude of the data pulse is measured at 0.5 V.
- 10. Disconnect the oscilloscope and connect the equipment as shown:

Note

Use only cables from the RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 11. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.
- 12. Sweep the Synthesized Sweeper slowly between the minimum and maximum module frequencies and monitor the module and display for clock loss, data loss, sync loss or errors alarms.
 - If a sync loss or errors alarm occurs at any frequency, select data input, then press CLKEDGE NEG. Check for pattern re-alignment, no alarm message on the display and no module alarm indicators.
- 13. Repeat step 12 with the Error Detector terminated in -2 V (press data input followed by TERM -2 V).
- 14. Return the Error Detector temination to 0 V.

Pattern Alignment with Selected Data Amplitude and Offset (0 V Term)

- 15. Press select pattern then set the pattern to 2^23-1.
- 16. Repeat step 12 with the Pattern Generator DATA AMPLTD and DATA HI LEVEL set to the values shown in the table below. (Verify the Data Amplitude on the Digitizing Oscilloscope.)

DATA AMPLITUDE	DATA HI LEVEL
500 mV	1.0 V
500 mV	-2.5 V
$500~\mathrm{mV}$	-3.5 V
*2.0 V	1.0 V
2.0 V	-1.0 V
2.0 V	-2.0 V

^{*}Set DATA HI-LEVEL before DATA AMPLTD.

17. Return the DATA AMPLTD to 0.5 V and the DATA HI-LEVEL to 1 V.

Pattern Alignment with Selected Data Amplitude and Offset (-2 V Term)

- 18. Press data input followed by TERM -2 V.
- 19. Press dat o/p followed by more 1 of 2 on the right of the display.
- 20. Select TERM -2 V.
- 21. Repeat step 12 with the Pattern Generator DATA AMPLTD and DATA HI-LEVEL set to the values shown in the table below:

DATA AMPLITUDE	DATA HI LEVEL
500 mV	0 V
500 mV	-3.5 V
*2.0 V	0 V
2.0 V	-2.0 V

^{*}Set DATA HI-LEVEL before DATA AMPLTD.

Error Output Waveform and Data Input Delay

Specifications

Error Output

Provides an electrical signal to indicate received errors. The error output pulse is the logical OR of all errors in a 16-bit period.

All specifications are for the output terminated 50Ω to 0V.

Format: NRZ, active high.

Amplitude: High: 0 V nominal. Low: -800 mV nominal.

Pulse Width: For 1-bit error: 16 clock pulses nominal.

Impedance: 50Ω nominal.

Interface: dc coupled.

Connector: BNC female.

Data Input Delay

The data sampling point can be set automatically to the center of the eye. The error detector sets the data/clock delay midway between two points either side of the eye where the bit error ratio is equal to a selectable threshold. The eye width is calculated and displayed. The sampling point can also be set manually by altering the data/clock delay.

Data delay variation vs selected clock edge:

Range: ±1 ns nominal. Resolution: 5 ps nominal.

Automatic Data/Clock Alignment and 0/1 Threshold Center: Selectable error-ratio thresholds

from 0 to 1 x 10^{1} .

Return Loss: 300 kHz to maximum operating frequency > 10 dB typical.

Impedance: 50Ω nominal.

Interface: dc couple.

Connector: N-type female.

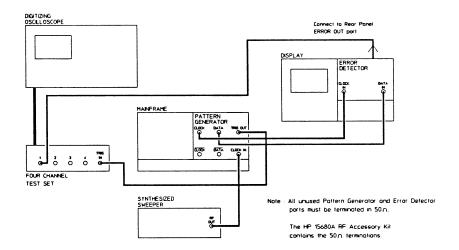
Description

The rear panel Error Output signal is verified by checking waveform parameters on a Digitizing Oscilloscope with Data Error Rate of 3.125e-02 (one error in every 32 bits). This Rate is obtained by independently setting the Pattern Generator and Error Detector to the same User Selectable Word pattern (pattern length is 32 bits), except that the last bit in the Pattern Generator word is inverted. The Error Detector will align to this pattern (with an error rate of one in 32) as the default alignment threshold is one error in every 10 bits.

The *User Selectable Words* can only be independently set if the Pattern Generator and Error Detector are configured as a *Master/Master* system (see page 4-52).

The data input delay is typically ± 1 ns with respect to the clock signal. A 500 MHz clock signal is use to verify the delay operation. The delay is varied at some point within the ± 1 ns delay range Sync Loss must occur (due to the clock period being 2 ns).

4-78 Performance Tests


Equipment

Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Digitizing Oscilloscope : HP 54121T Four Channel Test Set : HP 54121A Pattern Generator : HP70841A Display : HP 70004A

Procedure

Pattern Alignment in Master-Master

- 1. Initialize the Error Detector and Pattern Generator as a master/master system, see page 4-52.
- 2. Set the Synthesized Sweeper to the maximum module frequency and 0 dBm.
- 3. Connect the equipment as shown:

Note

Use only cables from the RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Ensure that the Error Detector CLK LOSS, DATA LOSS, SYNC LOSS or ERRORS alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display. If alarms are present, press data input on the Error Detector display followed by CLKEDGE NEG. Ensure the alarms disappear.
- 5. Press DISPLAY followed by NEXT INST to show the Pattern Generator parameters on the display then press USER.

Error Output Waveform and Data Input Delay

- 7. Press select pattern followed by user pattern. Press user pattern again then select PATTERN 1.
- 8. Press DISPLAY followed by NEXT INST to show the Error Detector parameters on the display then press (USER).
- 9. Repeat steps 6 and 7 for the Error Detector module.
- 10. Ensure that the Error Detector CLK LOSS, DATA LOSS, SYNC LOSS or ERRORS alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.
- 12. Ensure that the Errors alarm message is displayed and that the ERRORS alarm indicator is lit.

Fixed Error Rate Count

- 13. Press gating then select TIMED SINGLE. Set GATING PERIOD to 10 seconds using the numeric keys.
- 14. Press RUN GATING.
- 15. Wait for gating to finish then note the *Error Ratio* reading on the display. This will be typically 3.125e-02.

Measuring Error Output Waveform Parameters

16. Set the Digitizing Oscilloscope as follows:

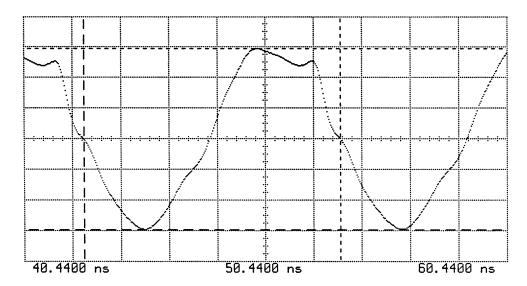
CHAN : Atten X1; CH1 on; CH2,3,4 off; CH 1 Amplitude 200 mV/Div;

Offset -400~mV

TIMEBASE: Timebase 1 ns/Div; Delay 16 ns; Delay ref left; Triggered

TRIGGER: Trig Level -500 mV; Slope +ve; Atten X1; HF Sense off; HF Reject

off


DISPLAY : Display Mode Averaged; Number of Averages 8; Screen Single

Bandwith 20 GHz.

Note

The above parameters may be obtained by using the Digitizing Oscilloscope Autoscale function and modifying as required.

17. Adjust the Digitizing Oscilloscope delay and timebase to center one Error pulse across the display. The display should now be similar to the following. the display shown is a typical waveform for the HP 70841A.

Ch. 1 = 150.0 mVolts/div Timebase = 2.00 ns/div Ch. 1 Parameters Rise Time = 3.1298 ns Freq. = 93.8210 MHz + Width = 5.4464 ns Overshoot = 0.000 % RMS Volts = 522.03 mVolts Offset = -441.3 mVolts
Delay = 40.4400 ns
P-P Volts = 885.93 mVolts
Fall Time = 2.5614 ns
Period = 10.6586 ns
- Width = 5.2122 ns
Preshoot = 0.000 %
Dutycycle = 51.09 %

Trigger on External at Pos. Edge at -463.5 mVolts

18. Measure the amplitude and width of the displayed pulse. Typical amplitude will be -0.80 V (that is, Hi level is 0 V, Low level is -0.80 V) and typical width will be 5.33 ns.

Data Input Delay Check

- 19. Press data input followed by DAT I/P DELAY, then set the Pattern Generator delay to +1 ns using the numeric keys.
- 20. Set the Synthesized Sweeper to 500 MHz at 0 dBm. If a Sync Loss alarm occurs, press CLKEDGE NEG ensure the alarm disappears.
- 21. Change the data input delay slowly to -1 ns using the rotary knob.
- 22. Check that Sync Loss occurs as the delay is reduced then is regained as the delay is further reduced.

Data Input Invert

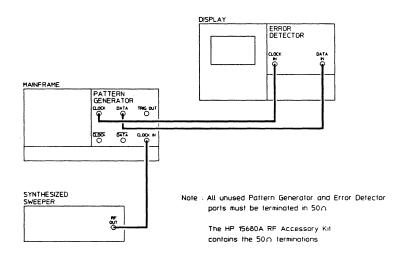
Specifications

Data Polarity: Selectable normal or inverted.

Description

The Error Detector input data can be normal or inverted. The inverted input is tested by setting the transmitted User Word to be the inverse of the received User Word and ensuring that these patterns sync up with no errors across the full frequency range.

The *User Selectable Words* can only be independently set if the Pattern Generator and Error Detector are configured as a *Master/Master* system (see page 4-52).


Equipment

Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Digitizing Oscilloscope : HP 54121T Four Channel Test Set : HP 54121A Pattern Generator : HP70841A Display : HP 70004A

Procedure

Pattern Alignment in Master-Master

- 1. Initialize the Error Detector and Pattern Generator as a master/master system, see page 4-52.
- 2. Set the Synthesized Sweeper to the minimum module frequency and 0 dBm.
- 3. Connect the equipment as shown:

Note

Use only cables from the RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Press DISPLAY followed by NEXT INST to show the Error Detector parameters on the display then press (USER).
- 5. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.
- 6. Press data input then set O/I THR AUTOMAN to MAN (manual threshold).
- 7. Press edit-usr-pat then PATTERN 1. Set pattern 1 to 1000 0000 0000 0000 (16 bits) see Appendix B
- 8. Press select pattern followed by user pattern. Press user pattern again then select USER PATTN 1.
- 9. Press DISPLAY followed by NEXT INST to show the Pattern Generator parameters on the display then press (USER).
- 10. Repeat steps 7 and 8 for the Pattern Generator module.
- 11. Ensure that the Error Detector CLK LOSS, DATA LOSS, SYNC LOSS or ERRORS alarm indicators are not lit.

Pattern Alignment with Data Output and Data Input Inverted

- 12. Press dat o/p and set POLRITY NORMINV to INV (inverted).
- 13. Press DISPLAY followed by NEXT INST to show the Error Detector parameters on the display then press USER.
- 14. Press data input and set POLRITY NORMINV to INV (inverted).
- 15. Ensure that the Error Detector CLK LOSS, DATA LOSS, SYNC LOSS or ERRORS alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.

Pattern Alignment with Data Output Inverted

- 16. Press data input and set POLRITY NORMINV to NORM (normal).
- 17. Ensure that the Error Detector SYNC LOSS and ERRORS alarm indicators are lit. Also check that the Sync Loss and Errors alarm messages are on the display.
- 18. Press edit-usr-pat then PATTERN 1.
- 19. Set Pattern 1 to 0111 1111 1111 1111 (16 bits)

Data Input Invert

20. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the **Clock Loss**, Data Loss, Sync Loss or **Errors** alarm messages are not on the display.

Pattern Alignment with Data Input Inverted

- 21. Press data input and set POLRITY NORMINV to INV.
- 22. Ensure that the Error detector SYNC LOSS and ERRORS alarm indicators are lit. Also check that the Sync Loss and Errors alarm messages are on the display.
- 23. Press DISPLAY followed by NEXT INST to show the Pattern Generator parameters on the display then press (USER).
- 24. Press dat o/p and set POLRITY NORMINV to NORM
- 25. Press DISPLAY followed by NEXT INST to show the Error detector parameters on the display.
- 26. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.

Pattern Synchronization Threshold

Specifications

Synchronization to the incoming pattern can be performed automatically or manually. In manual mode, the Sync Start key forces the Error Dectector to attempt synchronization with the received pattern.

Sync Gain/Loss Criteria: The criterion for gaining or losing synchronization is the error ratio in a 1 ms interval. Selectable error-ratio thresholds of 1 x 10⁻¹, 10⁻², 10⁻³ or 10⁻⁴ are provided.

Resync Time: PRBS $2^{23}-1$, $2^{15}-1$, $2^{10}-1$: < 200 ms nominal; PRBS $2^7-1 < 500$ ms nominal.

Word Patterns: $< n \times 2 \text{ ms} + 200 \text{ ms}$ nominal where n is the pattern length in bits.

Description

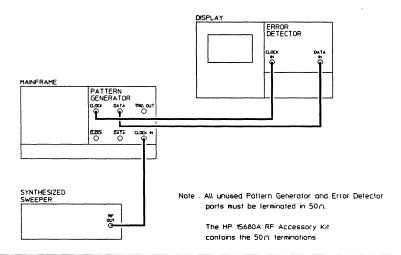
The Error Detector Pattern synchronization threshold is the error rate (measured in a 1 ms interval) above which the Error Detector is defined to have lost synchronization with the incoming pattern. The four user selectable sync thresholds are tested in both automatic and manual mode.

In automatic sync mode the Error Detector will begin to synchronize to the pattern immediately the error rate falls below the threshold. This is tested by transmitting a pattern with error rate above the threshold and checking that the Error Detector does not synchronize. With the error rate set below the threshold the Error Detector should now automatically synchronize to the incoming pattern and count the correct number of errors. With manual sync mode selected, synchronization will only occur once the operator has initiated it from the front panel keyboard. This is tested in 1e-02 sync threshold only. All tests are performed at maximum bit rate (clock frequency).

Because only one error add rate is available from the Pattern Generator, the error rates required to test synchronization thresholds can only be obtained by transmitting and receiving non-identical user selectable patterns. This is done by inverting 1 in every X bits in the transmitted pattern - where 1/X < or > the sync threshold under test.

The *User Selectable Patterns* can only be independently set if the Pattern Generator and Error Detector are configured as a *Master/Master* system.

Equipment


Synthesized Sweeper : HP 83620A RF Accessory Kit : HP 15680A Pattern Generator : HP70841A Display : HP 70004A

Pattern Synchronization Threshold

Procedure

Pattern Alignment in Master/Master mode

- 1. Initialize the Error Detector and Pattern Generator as a master/master system, see page 4-52.
- 2. Set the Synthesized Sweeper to maximum module frequency and 0 dBm.
- 3. Connect the equipment as shown:

Note

Use only cables from the RF Accessory Kit to connect the Pattern Generator to the Error Detector. These cables are of equal length and type and have optimum characteristics for the following tests.

- 4. Press data input then more 1 of 2. Press CLK-DAT ALIGN and wait for clock to Data alignment to complete.
- 5. The Error Detector CLK LOSS, DATA LOSS, SYNC LOSS or ERRORS alarm indicators should not be lit. The Clock Loss, Data Loss, Sync Loss or Errors alarm messages should not be on the display.
- 6. Press edit usr-pat on the Pattern Generator display followed by PATTERN 4. Set this User Pattern to 1010 (4 bits) see Appendix B.
- 7. Press select pattern followed by user pattern. Press user pattern again then select PATTERN 4.
- 8. Press DISPLAY followed by NEXT INST and USER to show the Error Detector on the display.
- 10. Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* or *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss or Errors alarm messages are not on the display.

Checking for Sync Loss with 1e-01 Threshold

- 11. Set the Error Detector Sync Threshold to 1e-01 by pressing More 1 of 2 followed by sync, SYNC THRSHLD and (1e-01).
- 13. Ensure that the Errors and Sync Loss alarm messages are displayed and the ERRORS and SYNC LOSS alarm indicators are lit.
- 15. The Sync Loss alarm message should no longer be displayed and the SYNC LOSS alarm indicator should no longer be lit.

Checking Error Ratio with Patterns in Sync

- 16. Press the Error Detector select page then press MAIN RESULTS to show Error Count, Delta Error Count, Error Ratio and Delta Error Ratio.
- 17. Press gating then select TIMED SINGLE followed by GATING PERIOD. Set the gating period to 10 seconds using the numeric keys.
- 18. Press RUN GATING ensure the Error Detector gating indicator is lit.
- 19. Wait for gating to finish (gating indicator not lit) then note the *Error Ratio* reading on the display typically 9.5e-02.

Checking for Sync Loss with 1e-02 Threshold

- 20. Press More 1 of 2 followed by sync and SYNC THRSHLD. Set the Error Detector sync threshold to 1e-02.
- 21. Press (DISPLAY) followed by NEXT INST and (USER) to show the Pattern Generator.
- 22. Press edit usr-pat followed by PATTERN 4.
- 23. Press recall pattern followed by 2-7 PRBS and NO MODIFY.
- 24. Reduce the pattern length to 99 bits by selecting SET PATTERN LENGTH then setting the length to 99 bits.
- 25. Repeat the previous four steps on the Error Detector display.
- 26. Ensure that the Error Detector CLK LOSS, DATA LOSS, SYNC LOSS and ERRORS alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss and Errors alarm messages are not on the display.

Pattern Synchronization Threshold

- 27. Invert the first bit of the Error Detector PATTERN 4. This gives an error ratio of 1.01e-02 (1 bit in 99) which is above the threshold.
- 28. Ensure that the Errors and Sync Loss alarm messages are displayed and the ERRORS and SYNC LOSS alarm indicators are lit.

Checking Error Ratio with Patterns in Sync

- 29. Increase the PATTERN 4 length to 102 bits on both the Pattern Generator and Error Detector.
- 30. The Sync Loss alarm message should no longer be displayed and the SYNC LOSS alarm indicator should no longer be lit.
- 31. Press gating on the Error Detector display then press RUN GATING.
- 32. Wait for gating to finish then note the *Error Ratio* reading on the display typically 9.804e-03.

Checking Manual Sync Mode

- 33. Set the Error Detector to manual sync mode by selecting More 1 of 2 then press sync. Set SYNC AUTOMAN to MAN (manual).
- 34. Return to Edit User Pattern 4 on the Error Detector and invert the second bit of the pattern.
- 35. Ensure that the Errors and Sync Loss alarm messages are displayed and the ERRORS and SYNC LOSS alarm indicators are lit.
- 36. Invert the first two bits of PATTERN 4 on the Error Detector to return the pattern to its original format.
- 37. Ensure that the Errors and Sync Loss alarm messages are still displayed and the ALARM and SYNC LOSS alarm indicators are still lit.
- 38. Return to sync then press SYNC START.
- 39. The Errors and Sync Loss alarm messages should disappear. The ERRORS and SYNC LOSS alarm indicators should not be lit.
- 40. Return the Error Detector SYNC AUTOMAN setting to AUTO (automatic)

Checking for Sync Loss with 1e-03 Threshold

- 41. Set the Error Detector sync threshold to 1e-03.
- 42. Press (DISPLAY) followed by NEXT INST and (USER) to show the Pattern Generator.
- 43. Press edit usr-pat followed by PATTERN 4.
- 44. Press recall pattern followed by 2~10 PRBS and NO MODIFY.

- 45. Reduce the pattern length to 992 bits by selecting SET PATTERN LENGTH then setting the length to 992 bits.
- 46. Repeat the previous four steps on the Error Detector display.
- 47. Wait for resync to occur (see the following note) then ensure that the Error Detector CLK LOSS, DATA LOSS, SYNC LOSS and ERRORS alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss and Errors alarm messages are not on the display.

Note

The Error Detector sync time increases with pattern length. Typical sync time for a 1000 bit pattern is 3 to 4 seconds.

- 48. Invert the first bit of the Error Detector User Pattern. This gives an error ratio of 1.008e-03 (1 bit in 992) which is above the threshold.
- 49. Ensure that the Errors and Sync Loss alarm messages are displayed and the ERRORS and SYNC LOSS alarm indicators are lit.

Checking Error Ratio with Patterns in Sync

- 50. Increase PATTERN 4 length to 1024 bits on both the Pattern Generator and Error Detector.
- 51. Wait for resync to occur (see previous note) then check that the Sync Loss alarm message is no longer displayed and the SYNC LOSS alarm indicator is no longer lit.
- 52. Press gating on the Error Detector then select RUN GATING.
- 53. Wait for gating to finish then note the *Error Ratio* reading on the display typically 9.766e-04.

Checking for Sync Loss with 1e-04 Threshold

- 54. Set the Error Detector sync threshold to 1e-04.
- 55. Press (DISPLAY) followed by NEXT INST and (USER) to show the Pattern Generator.
- 56. Press edit usr-pat followed by PATTERN 4.
- 57. Press recall pattern followed by 2^13 PRBS and NO MODIFY.
- 58. Repeat the previous three steps on the Error Detector display.
- 59. Wait for resync to occur (see the following note). Ensure that the Error Detector *CLK LOSS*, *DATA LOSS*, *SYNC LOSS* and *ERRORS* alarm indicators are not lit. Also check that the Clock Loss, Data Loss, Sync Loss and Errors alarm messages are not on the display.

Pattern Synchronization Threshold

Note

The Error Detector sync time increases with longer patterns. Typical sync time for a 8000 bit pattern is 25 to 30 seconds although this can be much shorter.

- 60. Invert the first bit of the Error Detector User Pattern. This gives an error ratio of 1.22e-04 (1 bit in 8192) which is above the threshold.
- 61. Ensure that the errors and Sync Loss alarm messages are displayed and the ERRORS and SYNC LOSS alarm indicators are lit.

Hewlett-Packard	$Tested\ by:$
Model 71600	Date:
Series System	Serial No.:

Operational Verification Test Record

tion	Result		
Min	Actual	Max	
TOR			
n correct (√)			
* * *			
alarm			
alarm			
orms			
1A:			
ne - 10 to 90%		120 ps	
e - 10 to 90%		120 ps	
		15%	
ot		15%	
5A:			
ne - 10 to 90%		300 ps	
e - 10 to 90%		300 ps	
		15%	
ot		15%	
	Min ATOR In correct (\checkmark) In correct (\checkmark) In correct and alarm (\checkmark) In correct and alarm (\checkmark)	n correct (\checkmark) m correct (\checkmark) ms salarm (\checkmark) m correct and alarm (\checkmark) m correct and alarm (\checkmark) orms clA: ne - 10 to 90% to ot l5A: ne - 10 to 90% te - 10 to 90%	

Page No.	Test Description		Result		
			Min	Actual	Max
4-13	Step 8:	HP 70841A:			
		Clock Ampl. 0.5 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			120 ps
		Fall Time - 10 to 90%			120 ps
		Preshoot			15%
		Overshoot			15%
		Clock Ampl. 2 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			$120~\mathrm{ps}$
		Fall Time - 10 to 90%			120 ps
		Preshoot			15%
		Overshoot			15%
		HP 70845A:			
		Clock Ampl. 0.5 V:			
		Waveform correct (√)			
		Rise Time - 10 to 90%			3 00 ps
		Fall Time - 10 to 90%			300 ps
		Preshoot			15%
		Overshoot			15%
		Clock Ampl. 2 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			300 ps
		Fall Time - 10 to 90%			300 ps
		Preshoot			15%
		Overshoot			15%
4-13	Step 11:	НР 70841 A : :			
		Clock Ampl. 2 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			120 ps
		Fall Time - 10 to 90%			120 ps
		Preshoot			15%
		Overshoot			15%

Page No.	Test Description		Result		
			Min	Actual	Max
4-13	Step 11:	Clock Ampl. 1 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			120 ps
		Fall Time - 10 to 90%			$120 \mathrm{\ ps}$
		Preshoot			15%
		Overshoot			15%
		Clock Ampl. 0.5 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			120 ps
		Fall Time - 10 to 90%			120 ps
		Preshoot			15%
		Overshoot			15%
		HP 70845A::			
		Clock Ampl. 2 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			300 ps
		Fall Time - 10 to 90%			300 ps
		Preshoot			15%
		Overshoot			15%
		Clock Ampl. 1 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			300 ps
		Fall Time - 10 to 90%			300 ps
		Preshoot			15%
		Overshoot			15%
		o versineer			1070
		Clock Ampl. 0.5 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			300 ps
		Fall Time - 10 to 90%			300 ps 300 ps
		Preshoot			15%
		Overshoot			15%
		5.01011000			2070

Page No.	Test Description		Result		
			Min	Actual	Max
4-13	Step 15:	HP 70841A: Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			1.3 ns 1.3 ns 15% 15%
		HP 70845A: Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%
4-14	Step 16:	HP 70841A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			1.3 ns 1.3 ns 15% 15%
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			1.3 ns 1.3 ns 15% 15%
		HP 70845A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%

Page No.	Т	est Description		Result	
			Min	Actual	Max
4-14	Step 16:	Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%
4-14	Step 19:	HP 70841A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot Clock Ampl. 1 V: Waveform correct (√)			1.3 ns 1.3 ns 15% 15%
		Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot Clock Ampl. 2 V: Waveform correct (√)			1.3 ns 1.3 ns 15% 15%
		Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			1.3 ns 1.3 ns 15% 15%
		HP 70845A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%

Page No.	Test Description		Result		
			Min	Actual	Max
4-14	Step 19:	Clock Ampl. 1 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%
4-14	Step 22:	Waveforms 180° out-of-phase. (\checkmark)			
4-15	Step 31:	Rising edge of pulse correct. $()$			
	Data Out	put Waveforms			
4-19	Step 10:	HP 70841A: Rise Time - 10 to 90% Rise Time - 20 to 80% Fall Time - 10 to 90% Fall Time - 20 to 80% Preshoot Overshoot			120 ps 90 ps 120 ps 90 ps 15% 15%
		HP 70845A: Rise Time - 10 to 90% Rise Time - 20 to 80% Fall Time - 10 to 90% Fall Time - 20 to 80% Preshoot Overshoot		·	250 ps 180 ps 250 ps 180 ps 15% 15%

Page No.	Test Description		Result		
			Min	Actual	Max
4-20	Step 12:	HP 70841A:			
		Rise Time - 10 to 90%			120 ps
		Rise Time - 20 to 80%			90 ps
		Fall Time - 10 to 90%			120 ps
		Fall Time - 20 to 80%			90 ps
		Preshoot			15%
		Overshoot			15%
		HP 70845A:			
		Rise Time - 10 to 90%			$250~\mathrm{ps}$
		Rise Time - 20 to 80%			180 ps
		Fall Time - 10 to 90%			$250~\mathrm{ps}$
		Fall Time - 20 to 80%			180 ps
		Preshoot		·	15%
		Overshoot			15%
4-20	Step 15:	HP 79841A:			
	-	Rise Time - 10 to 90%			120 ps
		Rise Time - 20 to 80%			90 ps
		Fall Time - 10 to 90%			120 ps
		Fall Time - 20 to 80%			90 ps
		Preshoot			15%
		Overshoot			15%
		HP 70845A:			
		Rise Time - 10 to 90%			$250~\mathrm{ps}$
		Rise Time - 20 to 80%			180 ps
		Fall Time - 10 to 90%			250 ps
		Fall Time - 20 to 80%			180 ps
		Preshoot			15%
		Overshoot			15%
4-21	Step 19:	HP 70841A:			
		Rise Time - 10 to 90%			150 ps
		Fall Time - 10 to 90%			150 ps
		Preshoot			15%
		Overshoot			15%
	<u> </u>				

Page No.	Test Description		Result		
			Min	Actual	Max
4-21	Step 19:	HP 70845A: Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			300 ps 300 ps 15% 15%
4-21	Step 20:	HP 70841A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			150 ps 150 ps 15% 15%
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			150 ps 150 ps 15% 15%
		HP 70845A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			300 ps 300 ps 15% 15%
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			300 ps 300 ps 15% 15%

Test Description		Result		
		Min	Actual	Max
G. 00	WD 500414			
Step 23:				
	i			
	Į.			150 ps
				$150~\mathrm{ps}$
				15%
	Overshoot			15%
	Clock Ampl. 2 V:			
	Waveform correct (√)			
	Rise Time - 10 to 90%			150 ps
	Fall Time - 10 to 90%			150 ps
	Preshoot			15%
	Overshoot			15%
	HP 70845A:			
	' ' '			300 ps
	1			300 ps
				15%
	Overshoot			15%
	Clock Ampl. 2 V:			
	-			
				$300~\mathrm{ps}$
	3			300 ps
				15%
				15%
	Overshoot			1370
Step 26:	Waveforms 180° out-of-phase. ($$)			
PRBS 2n-	–1 Pattern Length			
Step 5:	2^7-1	1023.9		1024.1
	2^10-1	4095.9		4096.1
	2^15-1	131071.9		131072.1
1	2^23-1	33554431.9		33554432.1
_	Step 23: Step 26: PRBS 2 ⁿ -	Step 23: HP 70841A: Clock Ampl. 0.5 V: Waveform correct (\$\) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot Clock Ampl. 2 V: Waveform correct (\$\) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot HP 70845A: Clock Ampl. 0.5 V: Waveform correct (\$\) Rise Time - 10 to 90% Fall Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot Clock Ampl. 2 V: Waveform correct (\$\) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot Step 26: Waveforms 180° out-of-phase. (\$\) PRBS 2^n-1 Pattern Length Step 5: 2^7-1 2^10-1 2^15-1	Min	Min

Page No.	T	est Description	Result		
		-	Min	Actual	Max
4-28	Step 8:	2^7-1	4063.9		4064.1
		2^10-1	16367.9		16368.1
		2^15-1	524271.9		524272.1
		2^23-1	34217711.9		34217712.1
4-29	Step 9:	2^7-1	4063.9		4064.1
		2^10-1	16367.9		16368.1
		2^15-1	524271.9		524272.1
		2^23-1	34217711.9		34217712.1
	Step 10:	2^7-1	4063.9		4064.1
		2^10-1	16367.9		16368.1
		2^15-1	524271.9		524272.1
		2^23-1	34217711.9		34217712.1
	Step 18:	2^7-1	4063.9		4064.1
	Step 22:	2^10-1	16367.5		16368.5
	ERROR I	DETECTOR			
	Clock Inp	ut Levels			
4-56	Step 7:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. $()$			
	Step 8:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 10:	Clk Loss alarm present. $()$			
	Step 13:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. $()$			
		n Pattern zation, Error Detect ory Backup			

Page No.	Т	est Description		Result	
			Min	Actual	Max
4-62	Step 5:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
4-63	Step 7:	NO Clk Loss, Data Loss, Sync Loss or Errors alarms present with the following PRBS: 2^10 MARKDEN (√) 2^11 MARKDEN (√) 2^13 MARKDEN (√)			
	Step 12:	Error count is 1. $()$			
	Step 13:	Error count increments by 1 and audible beep sounds each time the key is pressed. $()$			
	Step 15:	Error count increments by 1 and audible beep sounds each time the key is pressed at the following PRBS: 2^11 MARKDEN (√) 2^10 MARKDEN (√)			
	Step 16:	Maximum module frequency: Error count increments by 1 and audible beep sounds each time the key is pressed at the following PRBS: 2^7 MARKDEN (√) 2^11 MARKDEN (√) 2^13 MARKDEN (√)			

Page No.	Test Description		Result			
			Min	Actual	Max	
4-63	Step 20:	Errors alarm present. (√)				
4-64	Step 23:	Typical error ratio correct. $()$ Typical delta error ratio correct. $()$				
	Step 24:	Error ratio and delta error ratio correct at the following PRBS: 2^10 MARKDEN (√) 2^11 MARKDEN (√) 2^13 MARKDEN (√)				
	Step 26:	Error ratio and delta error ratio correct at the following PRBS: 2^7 MARKDEN (√) 2^10 MARKDEN (√) 2^11 MARKDEN (√) 2^13 MARKDEN (√)				
	Step 29:	Time/date correct. $()$				
	Step 30:	Power Loss Second displayed. $()$				
	Error Outp	put Waveform and t Delay				
4-79	Step 4:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)				
4-80	Step 10:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)				
	Step 12:	Errors alarm indicated and displayed. $()$				

Page No.	Test Description		Result		
			Min	Actual	Max
4-80	Step 15:	Error ratio correct (√)			
4-81	Step 18:	Pulse Amplitude correct (√)			
		Pulse Width correct (√)			
	Step 22:	Sync lost and regained as delay is reduced. (√)			

Hewlett-Packard Model 71	600 Series System
Location:	Serial No.:
	Tested by:
Temperature:	Certified by:
Humiditu:	Date:

Performance Test Record

Page No.	Test Description			Result		
		_	Min	Actual	Max	
4-8	PATTER! Clock Inp Step 9: Step 11:	Waveform correct $()$				
	Step 11.	Clock Loss alarm present. (√)				
4-9	Step13:	Waveform correct and Clk Loss alarm present. $()$				
	Step14:	Waveform correct and Clk Loss alarm present. $()$				
	Clock Out	tput Waveforms				
4-12	Step 7:	HP 70841A:				
		Rise Time - 10 to 90%			120 ps	
		Fall Time - 10 to 90% Preshoot			120 ps 15%	
		Overshoot			15%	
		HP 70845A:				
		Rise Time - 10 to 90%			$300~\mathrm{ps}$	
		Fall Time - 10 to 90%			300 ps	
		Preshoot Overshoot			15% 15%	

Page No.	Test Description		Result		
			Min	Actual	Max
4-13	Step 8:	HP 70841A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			120 ps 120 ps 15% 15%
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			120 ps 120 ps 15% 15%
		HP 70845A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			300 ps 300 ps 15% 15%
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			300 ps 300 ps 15% 15%
4-13	Step 11:	HP 70841A:: Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			120 ps 120 ps 15% 15%

Page No.	Test Description		Result		
		•	Min	Actual	Max
4-13	Step 11:	Clock Ampl. 1 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			120 ps
		Fall Time - 10 to 90%			$120~\mathrm{ps}$
		Preshoot			15%
		Overshoot			15%
		Clock Ampl. 0.5 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			$120~\mathrm{ps}$
		Fall Time - 10 to 90%			120 ps
	1	Preshoot			15%
		Overshoot			15%
		HP 70845A::			
		Clock Ampl. 2 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			300 ps
		Fall Time - 10 to 90%			300 ps
		Preshoot			15%
		Overshoot			15%
		Clock Ampl. 1 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			300 ps
		Fall Time - 10 to 90%			300 ps
		Preshoot			15%
		Overshoot			15%
		Clock Ampl. 0.5 V:			
		Waveform correct $()$			
		Rise Time - 10 to 90%			$300~\mathrm{ps}$
		Fall Time - 10 to 90%			$300~\mathrm{ps}$
		Preshoot			15%
		Overshoot			15%
		Overshoot			15%

Page No.	Т	est Description		Result	
			Min	Actual	Max
4-13	Step 15:	HP 70841A: Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot			1.3 ns 1.3 ns 15%
		Overshoot HP 70845A: Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			15% 2 ns 2 ns 15% 15%
4-14	Step 16:	HP 70841A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90%			1.3 ns 1.3 ns 15% 15% 15%
		Preshoot Overshoot HP 70845A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			15% 15% 2 ns 2 ns 15% 15%

Page No.	Test Description		Result		
			Min	Actual	Max
4-14	Step 16:	Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%
4-14	Step 19:	HP 70841A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot Clock Ampl. 1 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			1.3 ns 1.3 ns 15% 15% 1.3 ns 1.3 ns 1.3 ns
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot HP 70845A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot		-	1.3 ns 1.3 ns 1.5% 15% 2 ns 2 ns 15% 15%

Page No.	Test Description		Result		
			Min	Actual	Max
4-14	Step 19:	Clock Ampl. 1 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90%			2 ns 2 ns
		Preshoot Overshoot			15% 15%
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			2 ns 2 ns 15% 15%
4-14	Step 22:	Waveforms 180° out-of-phase. (√)			1070
4-15	Step 31:	Rising edge of pulse correct. $()$			
	Data Outp	out Waveforms			
4-19	Step 10:	HP 70841A: Rise Time - 10 to 90% Rise Time - 20 to 80% Fall Time - 10 to 90% Fall Time - 20 to 80% Preshoot Overshoot HP 70845A:			120 ps 90 ps 120 ps 90 ps 15% 15%
		Rise Time - 10 to 90% Rise Time - 20 to 80% Fall Time - 10 to 90% Fall Time - 20 to 80% Preshoot Overshoot			250 ps 180 ps 250 ps 180 ps 15% 15%

Page No.	Test Description		Result		
			Min	Actual	Max
4-20	Step 12:	HP 70841A:			
		Rise Time - 10 to 90%			$120~\mathrm{ps}$
		Rise Time - 20 to 80%			90 ps
		Fall Time - 10 to 90%			$120~\mathrm{ps}$
		Fall Time - 20 to 80%			90 ps
		Preshoot			15%
·		Overshoot			15%
		HP 70845A:			
		Rise Time - 10 to 90%			$250~\mathrm{ps}$
		Rise Time - 20 to 80%			180 ps
		Fall Time - 10 to 90%			250 ps
		Fall Time - 20 to 80%			180 ps
		Preshoot			15%
		Overshoot			15%
	Step 15:	HP 79841A:			
	Step 10.	Rise Time - 10 to 90%			120 ps
		Rise Time - 20 to 80%			90 ps
		Fall Time - 10 to 90%			120 ps
		Fall Time - 20 to 80%			90 ps
		Preshoot			90 ps 15%
		Overshoot			15%
		HP 70845A:			
		i			250 no
		Rise Time - 10 to 90%			250 ps
		Rise Time - 20 to 80%			180 ps
		Fall Time - 10 to 90%			250 ps
		Fall Time - 20 to 80%			180 ps
		Preshoot			15%
		Overshoot			15%
4-21	Step 19:	HP 70841A:			
		Rise Time - 10 to 90%			150 ps
		Fall Time - 10 to 90%			$150~\mathrm{ps}$
		Preshoot			15%
		Overshoot			15%
<u> </u>	<u></u>			<u> </u>	

Page No.	Т	est Description	on		Result	
			Min	Actual	Max	
4.01	C4 10.	HD 70045 A				
4-21	Step 19:	HP 70845A: Rise Time - 10 to 90%			300 ps	
		Fall Time - 10 to 90%			=	
		Preshoot			300~ m ps $15%$	
		Overshoot			15%	
		Oversnoot	•		19%	
4-21	Step 20:	HP 70841A:				
		Clock Ampl. 0.5 V:				
		Waveform correct $()$				
		Rise Time - 10 to 90%			150 ps	
		Fall Time - 10 to 90%			150 ps	
		Preshoot			15%	
		Overshoot			15%	
		Clock Ampl. 2 V:				
		Waveform correct $()$				
		Rise Time - 10 to 90%			150 ps	
		Fall Time - 10 to 90%			150 ps	
		Preshoot	•		15%	
		Overshoot			15%	
		HP 70845A:				
		Clock Ampl. 0.5 V:				
		Waveform correct $()$				
		Rise Time - 10 to 90%			300 ps	
		Fall Time - 10 to 90%			300 ps	
		Preshoot			15%	
		Overshoot			15%	
		Clock Ampl. 2 V:				
		Waveform correct $()$				
		Rise Time - 10 to 90%			300 ps	
		Fall Time - 10 to 90%			300 ps	
		Preshoot			15%	
		Overshoot			15%	
ı						

Page No.	Test Description		Result			
			Min	Actual	Max	
4-21	Step 23:	HP 70841A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90%			150 ps	
		Fall Time - 10 to 90% Preshoot Overshoot			150 ps 15% 15%	
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			150 ps 150 ps 15% 15%	
		HP 70845A: Clock Ampl. 0.5 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			300 ps 300 ps 15% 15%	
		Clock Ampl. 2 V: Waveform correct (√) Rise Time - 10 to 90% Fall Time - 10 to 90% Preshoot Overshoot			300 ps 300 ps 15% 15%	
4-21	Step 26:	Waveforms 180° out-of-phase. (√)				
	Trigger O Intrinsic	output and Data Output Jitter				
4-24	Step 9:	32 pulses ($$)				

Page No.	Te	st Description		Result	
o .			Min	Actual	Max
4-24	Step 11:	Pulse Amplitude			
		correct $()$			
		Pulse Width ok $()$			
		HP 70841A:			
4-26	1 -	Intrinsic Jitter			15 ps
	Step 19:	Intrinsic Jitter			15 ps
		HP 70845A:			
4-26	-	Intrinsic Jitter			30 ps
	Step 19:	Intrinsic Jitter			30 ps
	PRBS 2n-	1 Pattern Length			
4-28	Step 5:	2^7-1	1023.9		1024.1
		2^10-1	4095.9		4096.1
		2^15-1	131071.9		131072.1
		2^23-1	33554431.9		33554432.1
	Step 8:	2^7-1	4063.9		4064.1
	Step 5.	2^10-1	16367.9		16368.1
		2^15-1	524271.9		524272.1
		2^23-1	34217711.9		34217712.1
4-29	Step 9:	2^7-1	4063.9		4064.1
1 20	Buch 9.	2^10-1	16367.9		16368.1
		2^15-1	524271.9		524272.1
		2^23-1	34217711.9		34217712.1
	Step 10:	2^7-1	4063.9		4064.1
	Step 10:	2 1-1 2^10-1	16367.9		16368.1
		2 10-1 2 15-1	524271.9		524272.1
		2 13-1 2^23-1	34217711.9		34217712.1
		2 23-1	34217711.9		54217712.1
	Step 18:	2^7-1	4063.9		4064.1
	Step 22:	2^10-1	16367.5		16368.5
	PRBS 2^n Density	Variable Mark			
4-31	Step 5:	2 ⁷ MARKDEN with mark density ratio:			
		1/8	15.9		16.1
		1/8	31.9		32.1
		•	1		32.1
_	1	1/2	31.9		32.1

Page No.	T	est Description	n Result			
	·		Min Actual Ma			
4-31	Step 5:	3/4	15.9		16.1	
		7/8	7.9		8.1	
		2^10 MARKDEN with mark density ratio:				
		1/8	111.9		112.1	
		1/4	191.9		192.1	
		1/2	255.9		256.1	
		3/4	191.9		192.1	
		7/8	111.9		112.1	
		2^11 MARKDEN with mark density ratio:				
		1/8	223.9		224.1	
		1/4	383.9		384.1	
		1/2	511.9		512.1	
		3/4	383.9		384.1	
		7/8	223.9		224.1	
		2^13 MARKDEN with mark density ratio:				
		1/8	895.9		896.1	
		1/4	1535.9		1536.1	
		1/2	2047.9		2048.1	
		3/4	1535.9		1536.1	
		7/8	895.9		896.1	
4-32	Step 8:	2^7	127.9		128.1	
		2^10	1023.9		1024.1	
		2^11	2047.9		2048.1	
		2^13	8191.9		8192.1	
	Step 9:	2^7	127.9		128.1	
	1	2^10	1023.9		1024.1	
		2^11	2047.9		2048.1	
		2^13	8191.9	.	8192.1	
	Step 10:	2^7	127.9		128.1	
		2^10	1023.9		1024.1	
		2^11	2047.9		2048.1	
		2^13	8191.9		8192.1	

Page No.	Т	est Description		Result		
			Min	Actual	Max	
4-32	Step 18:	Ratio	127.9		128.1	
4-33	Step 19:	2^10	1023.9		1024.1	
		2^11	2047.9		2048.1	
		2^13	8191.9		8192.1	
	PRRS Ze	ro Substitution				
4-35	Step 5:	2^7 ZEROSUB with				
1 00	Stop 5.	longest run of zeros:				
		7 to 11	31.9		32.1	
		18 to 19	29.9		30.1	
		24 to 29	27.9		28.1	
		34 to 35	25.9		26.1	
		40 to 43	23.9		24.1	
		46 to 48	21.9		22.1	
		55 to 59	19.9		20.1	
		66 to 68	17.9		18.1	
		72 to 74	15.9		16.1	
		78 to 79	13.9		14.1	
		83 to 87	11.9		12.1	
		93 to 95	9.9		10.1	
	İ	99 to 100	7.9		8.1	
	1	105 to 109	5.9		6.1	
		114 to 115	3.9		4.1	
		118 to 119	1.9		2.1	
		120 to 127	0.9		1.1	
		0040 5777 00477 141				
		2^10 ZEROSUB with				
		longest run of zeros:	255.0		256.1	
		10 to 15	255.9		250.1 240.1	
		69 to 71	239.9		1	
		161 to 162	219.9		220.1	
		237 to 243	199.9		200.1	
		320 to 322	179.9		180.1	
		396 to 398	159.9		160.1	
		471 to 473	139.9		140.1	
		555 to 558	119.9		120.1	
		637 to 640	99.9		100.1	
		709 to 710	79.9		80.1	
		783 to 789	59.9		60.1	
	1	855 to 856	39.9		40.1	

Page No.	Test Description		Result		
			Min	Actual	Max
4-35	Step 5:	925 to 927	19.9		20.1
		1010 to 1011	4.9		5.1
		1022 to 1023	0.9		1.1
		2^11 ZEROSUB			
		longest run of zeros:			
		11 to 18	511.9		512.1
		63 to 67	499.9		500.1
		237 to 239	449.9		450.1
		439 to 441	399.9		400.1
		636 to 643	349.9		350.1
		841 to 842	299.9		300.1
		1065 to 1073	249.9		250.1
		1280 to 1281	199.9		200.1
		1463 to 1466	149.9		150.1
		1655 to 1656	99.9		100.1
		1854 to 1855	49.9		50.1
		2018 to 2022	9.9		10.1
		2038 to 2039	4.9		5.1
		2046 to 2047	0.9		1.1
		2^13 ZEROSUB			
	1	longest run of zeros;			
		13 to 20	2047.9		2048.1
		1037 to 1043	1799.9		1800.1
		1833 to 1836	1599.9		1600.1
		2604 to 2607	1399.9		1400.1
		3365 to 3368	1199.9		1200.1
		4180 to 4183	999.9		1000.1
		4946 to 4949	799.9		800.1
		5811 to 5812	599.9		600.1
		6616 to 6617	399.9		400.1
		7399 to 7401	199.9		200.1
	1	7795 to 7796	99.9		100.1
		7982 to 7985	49.9		50.1
		8148 to 8152	9.9		10.1
		8170 to 8174	4.9		5.1
		8188 to 8191	0.9		1.1

Page No.	Test Description		Result		
_		Min	Actual	Max	
	Err Add				
4-39	Step 11:	Reading increments by 1. (\checkmark)			
	Step 12:	Frequency 1 GHz: Reading increments by 1. (√)			
	Step 16:	Reading	31249.99		31250.01
	Step 17:	Reading at 1 GHz	31249.99		31250.01
	User Selection Memory	ctable Patterns and Backup			
4-42	Step 7:	Waveforms correct (√)			
4-43	Step 9:	Waveforms correct $()$			
4-44	Step 11:	Waveforms correct $()$			
	Step 13:	DC level good (√)			
4-45	Step 17:	PATTERN 1	159.9		160.1
		PATTERN 2	2.9		3.1
		PATTERN 3	4063.9		4064.1
		PATTERN 4 - DC no reading $()$			
	Step 21:	PATTERN 1	159.9		160.1
		PATTERN 2	2.9		3.1
		PATTERN 3	4063.9		4064.1
		PATTERN 4 - DC no reading (\checkmark)			
	Step 24:	PATTERN 1	159.9		160.1
		PATTERN 2	2.9		3.1
		PATTERN 3	4063.9		4064.1
		PATTERN 4 - DC no reading $()$			

Page No.	Test Description			Result			
			Min	Actual	Max		
	Auxiliary	Input Test					
4-48	Step 7:	Pulse able to inhibit PRBS at $DATA OUT$ port $()$					
	Step 8:	Pulse able to inhibit PRBS at DATA OUT port at each of the following frequencies: 499 MHz (\sqrt{)}					
		500 MHz (√)					
		1 GHz (√)					
		3 GHz (√)					
4-49	Step 14:	Correct reading $()$	0.9		1.1		
4-49	Step 15:	Correct reading at the following frequencies:					
		499 MHz (√)	0.9		1.1		
		500 MHz (√)	0.9		1.1		
		1 GHz (√)	0.9		1.1		
		3 GHz (√)	0.9		1.1		

Page No.	Т	est Description		Result	
			Min	Actual	Max
	ERROR I	DETECTOR			
	Clock Inpa	ut Levels			
4-56	Step 7:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 8:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 10:	Clk Loss alarm present. $()$			
	Step 13:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
		n-1 Pattern ization, Error Detect ble Beep			
4-58	Step 4:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 6:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present at each of the following PRBS: 2^15-1 (√) 2^10-1 (√) 2^7-1 (√)			
4-59	Step 12:	Audible beep heard. (√)			
	Step 13:	Error count is 1. $()$			

Page No.	Test Description		Result			
			Min	Actual	Max	
4-59	Step 14:	Audible beep sounds and the error count increments by 1 each time the key is pressed. $()$				
	Step 16:	Audible beep sounds and error count increments with each of the following PRBS settings: 2^10-1 (√) 2^15-1 (√) 2^23-1 (√)				
	Step 17:	Maximum module frequency: Audible beep sounds and error count increments at each of the following PRBS: 2^7-1 (√) 2^10-1 (√) 2^15-1 (√) 2^23-1 (√)				
	Step 21:	Errors alarm present $()$				
4-60	Step 24:	Typical error ratio correct. (√)				
	Step 25:	Typical error ratio and delta error ratio correct with the following PRBS: 2^15-1 ($$) 2^10-1 ($$) 2^7-1 ($$)		•		
	Step 27:	Error ratio and delta error ratio correct at 1 GHz with the following PRBS:				

Page No.	Т	est Description		Result	
	<u> </u>		Min	Actual	Max
4-60	Step 27:	2^23−1 (√)			
	<u> </u>	2 ¹⁵ −1 (√)			
		2 ¹⁰ −1 (√)			
		2^7-1 (√)			
		HP 70842A:			
	Step 28:	Error ratio and delta error ratio correct at 3 GHz with the following PRBS:			
		2 ²³ −1 (√)			
		2^15-1 (\sqrt{)}			
		2 ¹⁰ −1 (√)			
		2^7-1 (√)			
	1	n Pattern ization, Error Detect ory Backup			
4-62	Step 5:	No Clk Loss, Data			
		Loss, Sync Loss or Errors alarms present. (√)			
4-63	Step 7:	NO Clk Loss, Data Loss, Sync Loss or Errors alarms present with the following PRBS:			
		2^10 MARKDEN (√)			
		2^11 MARKDEN (√)			
		2^13 MARKDEN (√)			
	Step 12:	Error count is 1. $()$			
	Step 13:	Error count increments by 1 and audible beep sounds each time the key is pressed. ($$)			
	Step 15:	Error count increments by 1 and audible beep sounds each time the key is			

Page No.	Т	est Description		Result	
			Min	Actual	Max
4-63	Step 15:	pressed at the following PRBS: 2^11 MARKDEN (√) 2^10 MARKDEN (√) 2^7 MARKDEN (√)			
	Step 16:	Maximum module frequency: Error count increments by 1 and audible beep sounds each time the key is pressed at the following PRBS: 2^7 MARKDEN (√) 2^10 MARKDEN (√) 2^11 MARKDEN (√)			
	Step 20:	Errors alarm present. $()$			
4-64	Step 23:	Typical error ratio correct. (\checkmark) Typical delta error ratio correct. (\checkmark)			
	Step 24:	Error ratio and delta error ratio correct at the following PRBS: 2^10 MARKDEN (√) 2^11 MARKDEN (√) 2^13 MARKDEN (√)			
	Step 26:	Error ratio and delta error ratio correct at the following PRBS: 2^7 MARKDEN (√) 2^10 MARKDEN (√) 2^11 MARKDEN (√) 2^13 MARKDEN (√)			

Page No.	Test Description		· · · · · · · · · · · · · · · · · · ·	Result		
			Min	Actual	Max	
4-64	Step 29:	Time/date correct. (\checkmark)				
	Step 30:	Power Loss Second displayed. $()$				
	PRBS 2^1 Mark Den	n Pattern with Variable				
4-66	Step 5:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)				
	Step 8:	Sync Loss and Errors alarms present. $()$				
	Step 11:	No Sync Loss or Errors alarms. (\checkmark)				
4-67	Step 16:	Error count increments to 1 ($$)				
	Step 17:	Error count increments by 1 and Errors Alarm flashes each time the key is pressed. $()$				
	Step 19:	Error count increments and the Errors Alarm flashes each time the key is pressed at the following mark densities: $1/4 (\checkmark)$ $3/4 (\checkmark)$ $7/8 (\checkmark)$				
	Step 20:	Error count increments and the Errors alarm flashes each time the key is pressed when the				

Page No.	Test Description			Result	
			Min	Actual	Max
4-67	Step 20:	PRBS and mark densities are as following: 2^10 MARKDEN: 1/8 () 1/4 () 3/4 () 7/8 ()			
		2^11 MARKDEN: 1/8 (√) 1/4 (√) 3/4 (√) 7/8 (√)			
		2^13 MARKDEN: 1/8 (√) 1/4 (√) 3/4 (√) 7/8 (√)			
4-67	Step 22:	Maximum module frequency: Error count increments and the Errors alarm flashes each time the key is pressed when the PRBS and mark densities are as following: 2°10 MARKDEN: 1/8 (√) 1/4 (√) 3/4 (√) 7/8 (√)			
		2^11 MARKDEN: 1/8 (√) 1/4 (√) 3/4 (√) 7/8 (√)			

Page No.	Test Description		Result			
			Min	Actual	Max	
4-67	Step 22:	2^13 MARKDEN: 1/8 (√) 1/4 (√) 3/4 (√) 7/8 (√)				
	PRBS 2^n Pattern with Zero Substitution					
4-69	Step 5:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)				
4-70	Step 8:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present and that the resync times are as follows: Resync time for 2 ⁷ 7 ZEROSUB with the following longest run of zeros; 7, 10, 20, 30, 40, 50, 80, 82, 84, 86, 88, 89 and 90.			1 s	
		Resync time 2^10 ZEROSUB with the following longest run of zeros; 10, 100, 200, 300, 400, 500, 600, 700, 750, 770, 790, 794 and 795.			5 s	
		Resync time for 2 11 ZEROSUB with the following longest run of zeros; 11, 200, 400, 600, 800, 1000, 1200, 1400, 1550, 1590, 1595 and 1599.			8 s	

Page No.	Test Description		Result		
			Min	Actual	Max
4-70	Step 8:	Resync time for 2 ¹³ ZEROSUB with the following longest run of zeros; 13, 800, 2400, 4000, 5600, 6320, 6360, 6376, 6398 and 6400.			30 s
4-70	Step 9:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present and that the resync times at the maximumu module frequency is as follows: Resync time for 2^7 ZEROSUB with the			1 s
		following longest run of zeros; 7, 10, 20, 30, 40, 50, 80, 82, 84, 86, 88, 89 and 90.			
		Resync time for 2 ¹⁰ ZEROSUB with the following longest run of zeros; 10, 100, 200, 300, 400, 500, 600, 700, 750, 770, 790, 794 and 795.			5 s
		Resync time for 2 ¹¹ ZEROSUB with the following longest run of zeros; 11, 200, 400, 600, 800, 1000, 1200, 1400, 1550, 1590, 1595 and 1599.			8 s

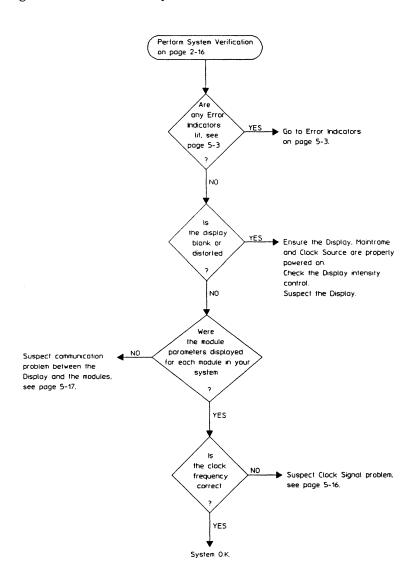
Page No.	Test Description		Result		
			Min	Actual	Max
4-70	Step 9:	Resync time for 2 ¹³ ZEROSUB with the following longest run of zeros; 13, 800, 2400, 4000, 5600, 6320, 6360, 6376, 6398 and 6400.			30 s
	I I	ctable Pattern ization and Error			
4-73	Step 6:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 7:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 12:	Error count is $1()$			
	Step 13:	Error count increments by 1 and Errors Alarms flashes each time the key is pressed. $()$			
	Step 15:	Error count increments by 1 and Errors Alarms flashes each time the key is pressed with the frequency set to the maximum module frequency. $()$			

Page No.	Test Description	Result			
		Min	Actual	Max	
4-73	Step 17:	Error count increments by 1 and Errors Alarms flashes each time the key is pressed with the frequency and PRBS set as follows: Minimum module frequency: USER PATN 2 (USER PATN 3 (USER PATN 4 (U			
		Maximum module frequency: USER PATN 2 (√) USER PATN 3 (√) USER PATN 4 (√)			
	Data Inpu	it Range (Automatic			
4-76	Step 11:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 12:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 13:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
4-77	Step 16:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present with DATA AMPLITUDE and DATA HI LEVEL set as follows:			

Page No.	Test Description	Result		
		Min	Actual	Max
4-77	Step 16: Data Ampl. Data Hi 500 mV 1 V ($$) 500 mV -2.5 V ($$) 500 mV -3.5 V ($$) 2 V 1 V ($$) 2 V -1 V ($$) 2 V -2 V ($$)			
4-77	Step 21: No Clk Loss, Data Loss, Sync Loss or Errors alarms present with DATA AMPLITUDE and DATA HI LEVEL set as follows: Data Ampl. Data Hi 500 mV 0 V (\sqrt{y}) 500 mV -3.5 V (\sqrt{y}) 2 V 0 V (\sqrt{y}) 2 V -2 V (\sqrt{y})			
	Error Output Waveform and Data Input Delay			
4-79	Step 4: No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
4-80	Step 10: No Clk Loss, Data Loss, Sync Loss or Errors alarms present. ()			
	Step 12: Errors alarm indicated and displayed. (√)			
	Step 15: Error ratio correct (√)			

Page No.	Test Description			Result	
			Min	Actual	Max
4-81	Step 18:	Pulse Amplitude correct ($$) Pulse Width correct ($$)			
	Step 22:	Sync lost and regained as delay is reduced. $()$			
	Data Inpu	it Invert			
4-83	Step 5:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 11:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 15:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 17:	Sync Loss and Errors alarms present. (\checkmark)			
4-84	Step 20:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 22:	Sync Loss and Errors alarms present. $()$			

Page No.	Т	est Description		Result	
			Min	Actual	Max
4-84	Step 26:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Pattern S Threshold	ynchronization			
4-86	Step 5:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
	Step 10:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
4-87	Step 13:	Sync Loss and Errors alarms present. $()$			
	Step 15:	No Sync Loss alarm present. (\checkmark)			
	Step 19:	Error ratio 9.5e−02 typical. (√)			
	Step 26:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
4-88	Step 28:	Sync Loss and Errors alarms present. $()$			
	Step 30:	No Sync Loss alarm. (\checkmark)			
	Step 32:	Error ratio correct (√)			


Page No.	T	est Description		Result	
			Min	Actual	Max
4-88	Step 35:	Sync Loss and Errors alarms present. $()$			
	Step 37:	Sync Loss and Errors alarms present. $()$			
	Step 39:	No Sync Loss and Errors alarms present. (\checkmark)			·
4-89	Step 47:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. $()$			
	Step 48:	Error ratio correct. (√)			
	Step 49:	Sync Loss and Errors alarms present. $()$			
	Step 51:	No Sync loss alarm present. (\checkmark)			
	Step 53:	Error ratio correct. $()$			
	Step 59:	No Clk Loss, Data Loss, Sync Loss or Errors alarms present. (√)			
4-90	Step 61:	Sync Loss and Errors alarms present. (\checkmark)			

Troubleshooting

The aim of this chapter is to help you identify the fault in your system.

Entry Chart

All troubleshooting starts from the Entry Chart below:

System Indicators

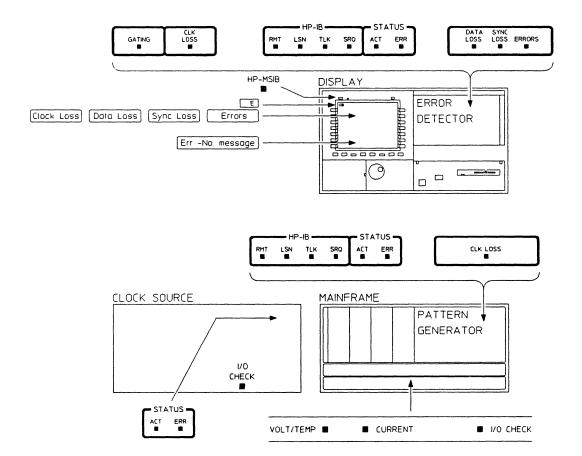
Each element in the system has indicators to help with problem identification. The following indicators are fitted:

Error Indicators These tell the user that there is a failure within the system.

Error Messages These appear on the display and perform the same function as the Error

Indicators.

Active (ACT) These tell the user which element is currently active in the system.


Indicators

HP-IB Indicators These tell the user the current HP-IB status of each element.

Gating Indictor This is fitted to the Error Detector module and indicates when a BER

measurement is in progress.

The following diagram will help you locate the indicators in your system:

Error Indicators

The error indicators and associated troubleshooting information is contained in the following table. Troubleshoot the error indicators in the order given.

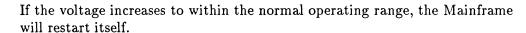
Error Indicator	Location	Meaning	Page
VOLT/TEMP	Mainframe	A low input ac voltage detected or an ambient temperature > 55 °C.	5-4
CURRENT	Mainframe	A high current load on Mainframe power supplies.	5-5
E (flashing)	Display (CRT)	An HP-MSIB problem has been detected at power on. This may affect normal communication between modules (may affect Error Reporting).	5-6
ERR (flashing)	Module or Clock Source		
HP-MSIB	Display (front panel)	An HP-MSIB problem has been detected.	
I/O CHECK	Mainframe or Clock Source		,
E (steady)	Display (CRT)	A master module or the display has detected an error.	5-8
ERR (steady)	Module or Clock Source	The element has an error condition. If the element is a slave, then the error indicator of the slave and its master will be lit.	
CLK LOSS	Pattern Generator or Error Detector	The module has not detected the incoming clock signal.	5-16
DATA LOSS	Error Detector	The module has not detected the incoming data over a 1 ms gating period.	5-16
SYNC LOSS	Error Detector	The module has been unable to synchronize to the incoming data pattern.	5-17
ERRORS	Error Detector	The module has detected Bit Errors in the incoming data pattern.	5-17

VOLT/TEMP Troubleshooting

The VOLT/TEMP indicator on the Mainframe is lit when one of the following conditions occur:

A low line voltage is applied to the Mainframe.

The ambient temperature inside the Mainframe is > 55 °C.

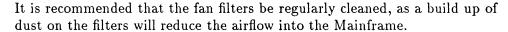

Use the following procedure to determine the cause of the fault:

1. Power down the system and disconnect the mains power cable from the Mainframe, then check that the Mainframe VOLTAGE SELECTOR switch is set correctly:

115 V position for 90 - 132 Vac line input voltage. 230 V position for 198 - 264 Vac line input voltage.

2. Check that the line input voltage is within specification.

Note



If the VOLTAGE SELECTOR switch and input line voltage are correct, suspect excessive ambient temperature inside the Mainframe.

3. Check that the fan is operating correctly by checking the air flow at the fan-intake openings.

Note

If the temperature decreases to within the normal operating range, the Mainframe will restart itself.

If all the above are good then the Mainframe is faulty, go to the Mainframe Service Manual for troubleshooting information.

CURRENT Troubleshooting

The CURRENT indicator on the Mainframe is lit when excessive current is detected.

Note

The Mainframe will not attempt to restart until the power has been cycled.

Use the following procedure to determine the cause of the fault:

- 1. Power down your system.
- 2. Remove any module(s) from the Mainframe.
- 3. Power on the system.
- 4. Is the CURRENT indicator still lit?

If YES, then the Mainframe is faulty, go to the Mainframe Service Manual for troubleshooting information.

If NO, then suspect the module(s).

HP-MSIB Troubleshooting

An HP-MSIB failure exists if any of the following indicators are lit:

E (flashing) on the display.

ERR (flashing) on a module.

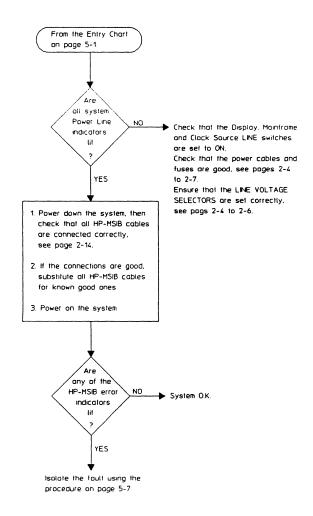
HP-MSIB lit on the Display front panel.

I/O CHECK lit on the Mainframe or Clock Source front panel.

The flashing E and ERR only occur at power on. When these occur normal communication between the Display and other elements in the system may be prevented. The cause of this failure must be found before any predictable system operation can take place.

The possible causes of an HP-MSIB failure are as follows:

Display, Mainframe or Clock Source not powered on


Poor HP-MSIB cable connection or faulty cable

Faulty Display

Faulty Mainframe

Faulty Module(s)

Faulty Clock Source

Use the following procedure to troubleshoot all HP-MSIB error indicators:

- 1. Isolate all elements in your system as follows:
 - i. Power down your system.
 - ii. Disconnect all HP-MSIB cables.
 - iii. Remove module(s) from the Display and Mainframe (if your system has one).
- 2. Check the Display as follows:
 - i. Power on the Display.
 - ii. Is there an E (flashing or steady) on the display?

If YES, then the Display is faulty.

If NO, power down the Display then go to step iii.

- iii. Connect a known good HP-MSIB cable between the IN and OUT HP-MSIB ports on the rear panel of the Display, then power on.
- iv. Is there an E (flashing or steady) on the display?

If YES, then the Display is faulty.

If NO, power down the Display, remove the HP-MSIB cable, then go to step 3

- 3. Check the module(s) as follows:
 - i. Plug a module into the Display, then power-on.
 - ii. Is there an E flashing on the Display or ERR flashing on the module?

If YES, then the module is faulty.

If NO, power down the Display then repeat step 3 for each module in your system.

If all modules are good, power down the Display then go to step 4.

- 4. Check the Mainframe as follows:
 - i. Connect known good HP-MSIB cables between the IN and OUT HP-MSIB ports on the rear panel of the Display and Mainframe (see page 2-14), then power on.
 - ii. Is there an E (flashing or steady) on the display, or is the HP-MSIB or I/O CHECK indicator lit?

If any error indicator is lit, check that the Display and Mainframe are properly powered on and that the HP-MSIB cabling is correct. If these are good, and E is still flashing on the display then the Mainframe is faulty.

If there are no error indicators lit, power down the system then go to step 5.

- 5. Check the Clock Source as follows:
 - i. Connect known good HP-MSIB cables between the IN and OUT HP-MSIB ports on the Display, Mainframe and Clock Source, see page 2-14.
 - ii. Power on the system.

If any HP-MSIB error indicator is lit check that system is properly powered on then check the HP-MSIB cabling. If these are good, suspect the Clock Source.

MMS Error Messages

MMS error messages are available when a steady E is displayed or a steady ERR indicator is lit (if the module is a slave, its masters ERR indicator is also lit). MMS error messages break down into two groups, a general summary of each is given below:

Instrument Specific

Errors

These error messages are specific to the HP 71600 Series and are positive numbers. They are divided into permanent and non-permanent fault conditions, see pages 5-9 to 5-15.

Standard Commands for **Programming** Instruments (SCPI)

These error messages apply to any Modular Measurement System (MMS) and are negative numbers. They are divided into three groups; Command Errors, Execute Errors and Query Errors.

Error messages appear automatically at the bottom of the display or are accessed through the Error Reporting function on the display.

Error Reporting

When an E appears on the display or an ERR indicator is lit and an error message is not automatically displayed the following procedure enables you to access the Error Reporting function on the display:

- 1. Press the (DISPLAY) key.
- 2. Press the REPORT ERRORS softkey. If more than one element has reported errors, use the MORE ERRORS softkey, see the following pages for Error Messages.

When errors are reported by a master, the model number and HP-MSIB address of the element that generated the error are displayed.

Note

After the errors have been read they are cleared from the system memory (except for permanent errors).

The tables on the following pages contain Non-permanent Errors, Permanent Errors and SCPI Errors.

Non-permanent Errors

Error No.	Displayed Message	Description	Applicability*
103	Already gating	The instrument cannot be commanded to start gating while it is already gating.	edet
104	Already not gating	The instrument cannot be commanded to end gating while it is already not gating.	edet
105	Not while gating	This command is not permitted while the instrument is gating.	edet
109	Keyboard locked	Commands that change the instrument's configuration are not permitted while the keyboard is locked.	edet + pgen
111	Conflicts with run of zeros	The zero-substitution pattern requested is incompatible with the current setting of the run of zeros.	edet + pgen
112	Conflicts with zsub length	The run of zeros requested is incompatible with the current setting of the zero-substitution length.	edet + pgen
113	Conflicts with data high level	The data amplitude requested is incompatible with the current setting of the data high level.	pgen
114	Conflicts with data amplitude	The data high level requested is incompatible with the current setting of the data amplitude.	pgen
115	Need 2 adjacent locations	This item cannot be added to the User's Page because it needs two adjacent locations.	edet
116	Logging already enabled	The instrument cannot be commanded to start logging while logging is already enabled.	edet
117	Logging already disabled	The instrument cannot be commanded to end logging while logging is already disabled.	edet
118	Not while logging enabled	This command is not permitted while the instrument has logging enabled.	edet
119	Slave needs service	The slave module has detected an error and is requesting that its error queue be read to identify the cause.	edet + pgen
120	Data attenuator too large	The instrument cannot produce the defined ECL levels with the current value of attenuator.	pgen
121	Slave not present	The command can be executed only if a slave module exists.	edet + pgen

Non-permanent Errors (continued)

Error No.	Displayed Message	Description	Applicability*
122	Need 4 adjacent locations	This item cannot be added to the User's Page because it needs four adjacent locations.	edet
123	Do not have system clock	The date or time cannot be set in this instrument as it is not the holder of the system date and time (ie there is another module from which it picked up the date and time at power up).	edet
124	Cannot align data if gating	A Clock to Data Align cannot be performed while we are gating as it interferes with the calculation of measurement results.	edet
125	Cannot center if gating	A 0/1 Threshold Center cannot be performed while we are gating as it interferes with the calculation of measurement results.	edet
126	Cannot align data if centering	A Clock to Data Align cannot be performed while we are performing a 0/1 threshold center operation.	edet
127	Cannot center data if aligning	A 0/1 threshold center operation cannot be performed while we are performing a Clock to Data Align operation.	edet
128	Already have external controller	The CONTROLLER capability cannot be used when an external HP-IB controller is already connected.	edet
129	Address conflicts with Err Det	Cannot set the printer address to that of the Error Detector.	edet
174	Non-volatile memory error	The non-volatile memory has failed causing the previous instrument setup to be lost.	edet + pgen
175	Results corrupted	The non-volatile memory has failed causing the measurement results to be lost.	edet

 $^{{\}rm ^*edit}{\rm =}{\rm Error\ Detector;\ pgen}{\rm =}{\rm Pattern\ Generator}$

Permanent Errors

Error No.	Displayed Message	Description	Applicability*
	Error codes associated with inte	rface 1 board	
130	Interface 1 board missing	The Interface 1 board is not present in the instrument.	edet + pgen
134	Too much calibration data	There is too much Phase Shifter (Vernier) calibration data to be held internally by the firmware. This must mean a bad calibration or that the calibration method has changed and this firmware is out of data.	edet + pgen
135	Vernier not calibrated	The calibration data for the Phase Shifter Vernier has been corrupted in the EEPROM.	edet + pgen
136	EEPROM sync-loss contents error	The calibration data for sync-loss detection has been corrupted in the EEPROM.	edet
	Error codes associated with inte	erface 2 board	
140	Interface 2 board missing	The Interface 2 board is not present in the intrument.	pgen
143	Interface 2 freq meas error	The self-test firmware detected that a frequency measurement could not be started correctly.	pgen
144	EEPROM data contents error	The calibration data for the data amplifier has been corrupted in the EEPROM.	pgen
145	EEPROM clock contents error	The calibration data for the clock amplifier has been corrupted in the EEPROM.	pgen
	Error codes associated with gate		
150	Gate array board missing	The Gate Array board is not present in the instrument.	edet + pgen
151	Gate array register error	An error has been detected while testing the Gate Array WORD_PAT_LENGTH or TRIGGER registers.	edet + pgen
153	Gate array control error	An error has been detected while testing the Gate Array CONTROL REGISTER.	edet + pgen

Error No.	Displayed Message	Description	Applicability*
154	Gate array opmode error	An error has been detected while testing the Gate Array OPMODE REGISTER.	edet + pgen
155	Gate array reset error	An error has been detected while testing the Gate Array SOFTWARE RESET.	edet + pgen
156	Gate array RAM (U1) error	The self-test firmware detected a problem with writing to and reading from the ECL RAM CHIP U1 on the Gate Array board.	edet + pgen
157	Gate array RAM (U2) error	The self-test firmware detected a problem with writing to and reading from the ECL RAM CHIP U2 on the Gate Array board.	edet + pgen
158	Gate array RAM (U3) error	The self-test firmware detected a problem with writing to and reading from the ECL RAM CHIP U3 on the Gate Array board.	edet + pgen
159	Gate array RAM (U4) error	The self-test firmware detected a problem with writing to and reading from the ECL RAM CHIP U4 on the Gate Array board.	edet + pgen
	Error codes associated with PII	1	
160	PIT contents corrupt	The Peripheral Interface / Timer (PI/T) device on the Control Processor board is not correctly retaining the values placed in it's Timer Preload Registers.	edet + pgen
161	PIT timer failure	The Peripheral Interface / Timer (PI/T) device on the Control Processor board is not correctly counting time.	edet + pgen
	Error codes associated with RA	M	
170	RAM (U25) error	The Self-test firmware detected a problem with writing reading from the RAM on the Control Processor Board U25.	edet + pgen
171	RAM (U26) error	The Self-test firmware detected a problem with writing reading from the RAM on the Control Processor Board U26.	edet + pgen

Error No.	Displayed Message	Description	Applicability*
172	RAM (U27) error	The Self-test firmware detected a problem with writing reading from the RAM on the Control Processor Board U27.	edet + pgen
173	RAM (U28) error	The Self-test firmware detected a problem with writing to and reading from the RAM on the Control Processor Board U28.	edet + pgen
	Error codes associated with RO	M	
180	ROM (U29) error	The self-test firmware detected an error during the CRC check of the Read Only Memory (ROM) on the Control Processor Board U29.	edet + pgen
181	ROM (U30) error	The self-test firmware detected an error during the CRC check of the Read Only Memory (ROM) on the Control Processor Board U30.	edet + pgen
	Error codes associated with HP	I -MSIB	
190	MSIB error	The internal self-test of the HP-MSIB bus has detected an error.	edet + pgen
191	Unrecognised slave found	An unrecognised MMS module has been found in this module's slave address space.	edet + pgen
192	Too many slaves found	More than the permitted number of slaves have been found in this module's slave address space.	edet + pgen
193	Slaved patt gen f/w incompatible	The firmware version of the slaved Pattern Generator is too old to be compatible.	edet
194	Slaved clock f/w incompatible	The firmware version of the slaved clock is too old to be compatible.	pgen
	Error codes associated with me	l asurement processor	
200	Measurement board missing	The Measurement Processor board is not present in the instrument.	edet
201	DPRAM test error	The Self-test firmware detected a problem with writing to and reading from the Dual Port RAM (DPRAM) on the Control Processor Board U28.	edet

Error No.	Displayed Message	Description	Applicability*
202	DPRAM exchange error	An error occurred in the firmware when we tried to create an exchange for processing results.	edet
203	DPRAM initialisation error	An error occurred in the firmware when trying to set up the firmware for processing of results from the DPRAM.	edet
204	DPRAM timeout error	The Control Processor firmware timed out while waiting for a response to a command sent to the Measurement Processor.	edet
205	Invalid DPRAM command	An invalid command has been sent via DPRAM to the Measurement Processor from the Control Processor.	edet
207	Results missed error	One or more sets of results from the Measurement Processor has been missed by the Control Processor.	edet
208	Measurement firmware incompatible	The firmware in the Measurement Processor is incompatible with the firmware in the control processor.	edet
210	Pattern type protocol error	An invalid pattern type command has been sent to the Measurement processor from the control processor.	edet
211	Pattern length protocol error #1	An invalid pattern length command has been sent to the Measurement processor from the control processor.	edet
212	Polarity protocol error	An invalid pattern polarity command has been sent to the Measurement processor from the control processor.	edet
213	Sync protocol error	An invalid sync command has been sent to the Measurement processor from the control processor.	edet
214	Threshold protocol error	An invalid sync threshold command has been sent to the Measurement processor from the control processor.	edet
215	Clock edge protocol error	An invalid clock edge command has been sent to the Measurement processor from the control processor.	edet
216	Pattern length protocol error #2	An invalid pattern length command has been sent to the Measurement processor from the control processor.	edet

Error No.	Displayed Message	Description	Applicability*
217	Header protocol error	An invalid command has been sent to the Measurement processor from the control processor.	edet
218	Measurement board ROM (U3) error	The self-test firmware detected an error during the CRC check of the Read Only Memory (ROM) on the Measurement Processor Board U3.	edet
219	Measurement board ROM (U4) error	The self-test firmware detected an error during the CRC check of the Read Only Memory (ROM) on the Measurement Processor Board U4.	edet
220	Measurement board RAM (U5) error	The Self-test firmware detected a problem with writing to and reading from the RAM on the Measurement Processor Board U5.	edet
221	Measurement board RAM (U6) error	The Self-test firmware detected a problem with writing to and reading from the RAM on the Measurement Processor Board U6.	edet
222	Measurement board PIT timer error	The Peripheral Interface / Timer (PI/T) device on the Measurement Processor board is not correctly counting time.	edet
223	Measurement board PIT contents error	The Peripheral Interface / Timer (PI/T) device on the Measurement Processor board is not correctly retaining the values placed in it's Timer Preload Registers.	edet
224	Pattern length protocol error #3	An invalid pattern length command has been sent to the Measurement processor from the control processor.	edet

 $^{{\}rm ^*edit}{\rm =}{\rm Error\ Detector;\ pgen}{\rm =}{\rm Pattern\ Generator}$

Standard Commands for Programming Instruments (SCPI)

Command Error (CME)	Execute Error (EXE)	Query Errors (QYE)		
-100 to -199	-200 to -299	-400 to -499		
For more details on programming errors, see the HP 71600 Series System Programming Manual.				

Clock Loss Troubleshooting

If the clock frequency shown on the display is incorrect or if the *CLK LOSS* indicator is lit on either the *Error Detector* or *Pattern Generator* module, suspect that one of the following is faulty:

Clock Source
Cable connecting Clock Source to CLOCK IN port on module(s)
Module(s)

Note

The $CLK\ LOSS$ indicator will be lit if clock signal is typically $< -10\ dBm$.

If your system is an Error Performance Analyzer and the CLK LOSS indicator is lit on both the Error Detector and Pattern Generator modules, suspect the Clock Source or one of the cables. If only one indicator is lit, then suspect the cables or the module.

If the Error Detector module is suspect, connect the Clock Source *OUTPUT* to the Error Detector *CLOCK IN* port. If the *CLK LOSS* indicator is still lit the Error Detector is faulty.

If your system is a Pattern Generator - suspect the cables, Clock Source or module.

To troubleshoot both systems first check the output of the Clock Source then use known good cables - if still faulty then suspect the module.

Clock Source Output

Check that the frequency of the Clock Source has been set within the range of the system, 50 MHz to 1 GHz for the HP 71601A/HP 71602A and 100 MHz to 3 GHz for the HP 71603A/HP 71604A. If correct, use an Oscilloscope or Power Meter to check the output level is > -10 dBm. If good, the Clock Source is good.

DATA LOSS Troubleshooting

The DATA LOSS indicator is lit on Error Detector when no data transitions have been detected over a 1 ms period. Normally, if there is a loss of input signal the SYNC and ERRORS indicators will be lit. A loss of clock signal may also cause the DATA LOSS indicator to light, see Clock Loss Troubleshooing.

To troubleshoot the systems first check the data being applied to the *Error Detector* and use known good cables - if still faulty then suspect the module.

Note

The Error Detector DATA IN port is very sensitive and will trigger on background noise.

SYNC LOSS and ERRORS Troubleshooting

If either of these indicators is lit, check that the Error Performance Analyzer verification procedure has been performed correctly. If good, suspect Clock or Data cabling between modules or a fault in the Pattern Generator or Error Detector module.

Communication Troubleshooting

If you are unable to access the module(s) in your system through the Display - no communication between the Display and the module(s) - and there are no error indicators lit, use the following procedure to isolate the fault:

- 1. Check all modules have been set to valid HP-MSIB addresses, see pages 6-5 to 6-8.
- 2. Isolate all elements in your system as follows:
 - i. Power down your system.
 - ii. Disconnect all HP-MSIB cables.
 - iii. Remove module(s) from the Display and Mainframe (if your system has one).
- 3. Check that the Display can access all 31 addresses on $row \theta$ as follows:
 - i. Power on the Display.
 - ii. Press (DISPLAY) and Address Map.
 - iii. Use the front panel control knob to scroll the green rectangle (on the display) along the 31 addresses on row 0.

If a red rectangle appears, the Display is faulty.

If you can access the addresses, the Display is good. Power down the Display then go to step 3.

- 4. Check the module(s) as follows:
 - i. Plug a module into the Display.
 - ii. Power on the Display.
 - iii. Check that the Display can access all 31 addresses on row θ , use the procedure in step 2.

If a red rectangle appears, the module is faulty.

If you can access the addresses, the module is good, power down the Display then repeat step 3 for each module in your system.

If all modules are good, power down the Display, remove the module then go to step 4.

- 5. Check the Mainframe as follows:
 - i. Connect known good HP-MSIB cables between the HP-MSIB IN and OUT ports on the rear panel of the Display and Mainframe, see page 2-14.
 - ii. Power on the Display and Mainframe.
 - iii. Check the Display can access all 31 addresses on row 0, use the procedure in step 2.

If a red rectangle appears, the Mainframe is faulty.

If you can access the addresses, the Mainframe is good. Power down and goto step 5.

- 6. Check the Clock Source as follows:
 - i. Connect known good HP-MSIB cables between the HP-MSIB IN and OUT ports on the Display, Mainframe and Clock Source, see page 2-14.
 - ii. Power on the system.
 - iii. Check that the Display can access all 31 addresses on row 0, use the procedure in step 2.

If a red rectangle appears, the Clock Source is faulty.

If you can access the addresses, the Clock Source is good.

HP 71600 Series Modular Measurement System

Your HP 71600 Series (Error Performance Analyzer and Pattern Generator) is made up of a Display, Mainframe and Module(s). These are linked together by a bus system called the Hewlett-Packard Measurement System Interface Bus (HP-MSIB) to form a Modular Measurement System (MMS). The HP 71600 Series can be configured as a master/slave MMS or a master/master MMS. The information is presented under the following headings:

HP 71600 Series Explains that the HP 71600 Series is a Modular Measurement

System (MMS), introduces the MMS master/slave concept and lists MMS terms. The MMS master/master concept is explained in

Appendix A.

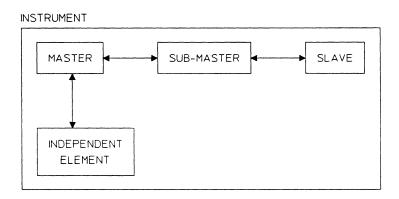
HP-MSIB Covers the topics you need to know when connecting to the

Hewlett-Packard Measurement System Interface Bus (HP-MSIB).

HP 71600 Series

The basic master/slave MMS model and how it relates to the HP 71600 Series is described under the following headings:

- Basic Master/Slave MMS Model
- Communicating within an MMS
- HP 71600 Series with MMS Terms


Note

For master/master MMS configuration, see Appendix A.

Basic Master/Slave MMS Model

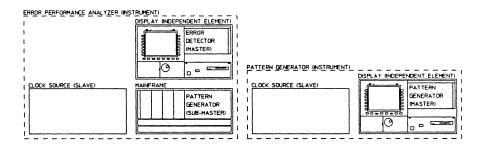
The basic master/slave model is illustrated in the following diagram.

The master in the above diagram communicates to the other elements in the system as follows:

Master communicates directly with the sub-master.

Master communicates with the slave through the sub-master.

Master communicates directly with the independent element.


Sub-master communicates with slave.

The terms used in the MMS are described on the next page.

MMS Terms	Description
Functional Terms	
Element	Any device that can communicate over the HP-MSIB.
Instrument	Any element or group of elements that perform an independent function (for example, the HP 71601A 0.1-1 Gbit/s Error Performance Analyzer).
Master	An element that can control slaves over the HP-MSIB.
Sub-master	An element that simultaneously controls other elements and is itself controlled by another element.
Slave	An element that is currently controlled by another element.
Independent Element	An element that is neither a master or slave (for example the HP 70004A Display).
Hardware Terms	
Mainframe	A device into which plug-in modules are installed. An MMS instrument is made up of one or more modules installed into a mainframe.
Module	A device that plugs into a mainframe. Modules cannot operate unless they are installed into a mainframe. Modules are designed in various widths described as either a 1/8-width, 2/8-width, 3/8-width or 4/8-width module.
Stand-alone Instrument	An element capable of performing its functions without a mainframe.
Extender Module	This module contains an HP-MSIB extender cable which is used when an element is being worked on outside the mainframe.
User Terms	
Address Map	A graphic representation (row, column) of assigned and available HP-MSIB addresses. It is also a matrix that represents the relationship among master, slave and independent elements (see page 6-6).
Address Switches	These switches set the HP-MSIB addresses of modules and also set the HP-IB addresses of modules in $row \ \theta$.
HP-MSIB Row 0	Modules assigned to row 0 report all errors to the display. Only row 0 modules can have HP-IB addresses. When you select the NEXT INSTR display function, the display searches row 0 only.
Error Messages	These are coded messages used to indicate module or system status. These codes are identified in <i>Troubleshooting</i> .

HP 71600 Series with MMS Terms

The basic HP 71600 Series configurations with MMS terms highlighted in parenthesis are illustrated in the following diagrams:

Your system is shipped to you from the factory as a master/slave Modular Measurement System (MMS).

In an Error Performance Analyzer system the Error Detector master module controls the slave Pattern Generator module and the Clock Source. The Pattern Generator module (a slave to the Error Detector) is a sub-master to the Clock Source. The Clock Source is controlled directly by the Pattern Generator, and indirectly by the Error Detector (through the Pattern Generator).

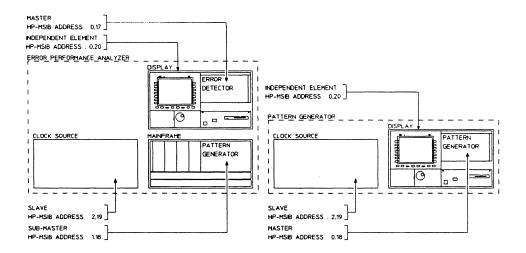
In a Pattern Generator system the master module is the Pattern Generator, it controls the slave Clock Source.

Communicating within an MMS

Elements which make up an MMS, communicate over the Hewlett-Packard Measurement System Interface Bus (HP-MSIB). To communicate successfully:

- Ensure the cabling is correct, see page 2-14.
- Ensure the addresses assigned to the elements that make up your system follow the protocol outlined in the HP-MSIB section, see page 6-6. The factory preset addresses are shown on page 6-5.

Hewlett-Packard Measurement System Interface Bus (HP-MSIB)


This section details information required to help you with HP-MSIB:

- Preset Addresses
- Changing Addresses
- Assigning Addresses
- Basic HP-MSIB Cabling
- HP 71600 Series HP-MSIB Cabling

Preset Addresses

The MMS uses an address map (or matrix) of 8-rows and 32-columns to enable you to assign addresses to elements in your system.

The HP 71600 Series HP-MSIB factory preset addresses (row, column) are shown in the following diagram:

Changing Addresses

Ensure you are fully aware of your system in relation to the MMS address protocol when assigning addresses or the system will fail to operate (see page 6-6).

All elements which communicate over the HP-MSIB have address switches (typically 8 switches in the one package):

Three switches define the row address Five switches define the column address

The system must be powered down when you change the address settings. The switches are read at power-on (for more information on the *Address Switches*, see page 2-8).

Assigning Addresses (in a master/slave configuration)

Note

For master/master configuration information, see Appendix A.

There is a protocol which must be adhered to when assigning addresses to elements in a Modular Measurement System (MMS). The protocol for assigning addresses to master, sub-master, slave modules and independent elements in an MMS is explained in the following pages.

The MMS uses an address map (or matrix) of 8-rows and 32-columns to enable you to assign addresses to the elements in your system.

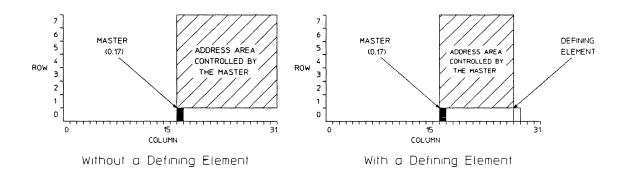
Note

There are 255 possible addresses available. Row 0, column 31 is not a valid address.

Addresses cannot be assigned indiscriminately - rules have to be followed:

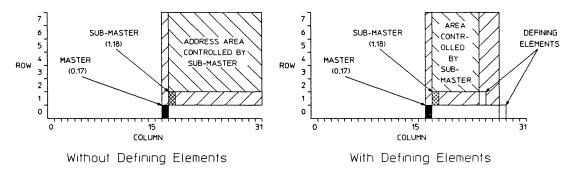
1. Assign the master module address (row, column) - the master must be assigned to $row \theta$ if you want your system to communicate over the HP-IB, or if you want to use the Display REPORT ERRORS function.

Each master has a slave address area, any module in that area may be controlled by the master. The boundaries of the slave address area are defined as follows:


Row Boundaries

The first boundary is the row immediately above the master, the other boundary is row 7 (see the following diagram). If the master is located in row 7, it cannot have slaves.

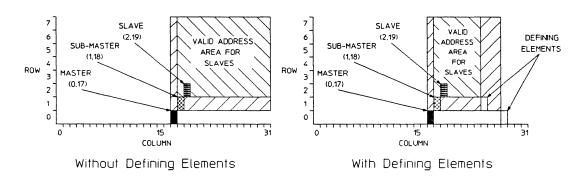
Column Boundaries


The first boundary is the same column as the master. The other boundary is column 31 or any column to the right of the master containing a module (this is known as a defining element) which has a row address at or below the master row. The column containing the defining element is not part of the slave address area.

The following diagrams show the slave address area of a system with and without a defining element.

2. Assign the sub-master module address - any row and column within the control of the master, see the previous diagrams.

The slave address area controlled by the sub-master is determined by the addresses of the sub-master and the defining element - if your system has one (see previous step for row and column boundaries). The following diagrams show the slave address area of a system with and without a defining element.



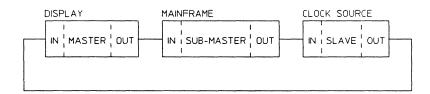
Note

The slave address area of the sub-master is excluded from the slave address area of the master.

3. Assign the slave address - any row and column within the control of the master or sub-master. The following diagram shows the slave in the sub-master slave address area. The master can only communicate with this slave through the sub-master.

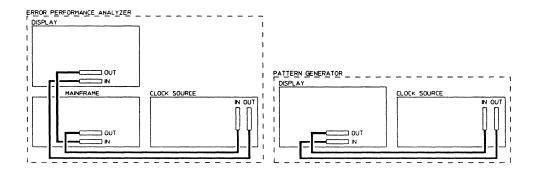
Slave Area and Defining Elements

Master modules establish their slave address area by determining the location of a defining element (if the system has one). The master address and the defining element address establish the slave area boundaries.


The address requirements of a defining element are as follows:

Column Address > the column address of the master (or sub-master)

Row Address < the row address of the master (or sub-master)


Basic HP-MSIB Cabling

An MMS requires that the HP-MSIB cables which interconnect the Display, Mainframe and Clock Source form a closed loop, see the diagram below:

HP 71600 Series HP-MSIB Cabling

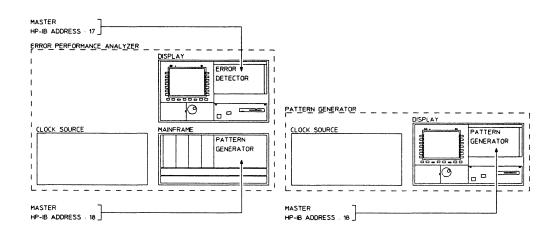
The following diagrams show the HP-MSIB cabling for your system. The connectors are located on the Display, Mainframe and Clock Source.

The diagram shows the systems viewed from the rear.

Hewlett-Packard Interface Bus (HP-IB)

The HP 71600 Series can be controlled remotely by an external controller over the HP-IB. This section contains information to help you with HP-IB:

- Preset Addresses
- Changing Addresses
- Assigning Addresses
- Connecting your system to an HP-IB controller
- Cables and Connectors


Preset Addresses

The HP 71600 Series factory preset HP-IB addresses are shown in the following diagram:

Note

Ensure that the Error Detector and Pattern Generator module row addresses are set to θ for HP-IB operation.

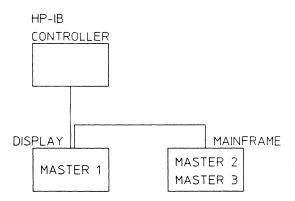
Changing Addresses

The recommended method of changing the HP-IB address (column address) of your master module is to use the HP-IB Address function on the Display, see the HP 71600 Series Operating Manual.

The system normally powers on with the HP-IB address established before the last power down. However, if you change the column settings of the HP-MSIB/HP-IB switches the system will power up with the new value.

Caution

It is not recommended that you change the HP-IB address using the HP -MSIB/HP-IB switch, as this also changes the HP-MSIB address. If the HP-MSIB address protocol is violated, your system will fail to operate.


Assigning Addresses

An HP-IB address can only be assigned to an element in row 0 - normally the master element in your system.

Cabling (HP-IB)

The number of HP-IB cables required is dependent on the number of displays and mainframes, and on how the masters are distributed in your system.

For example, if a three master system has one master housed in a display and the other two housed in a mainframe, then two cables are required - from the HP-IB controller to the display, the other from the display to the mainframe, see the diagram below:

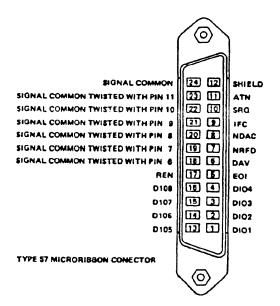
Connecting Your System to an HP-IB Controller

Your System can be controlled by an external controller through the HP-IB. Only one cable is required for a Pattern Generator system, it is connected to the Display. Two cables are required for the Error Performance Analyzer system.

For more details on remote control, see HP 71600 Series Operating Manual.

HP-IB Connector Pinout and Cables

The connector pinout and the cable HP part numbers of suitable cables are shown below:


Logic Levels

The HP-IB logic levels are TTL compatible i.e. the true (1) state is 0 to +0.5 V DC and the false (0) state is +2.5 to +5V DC.

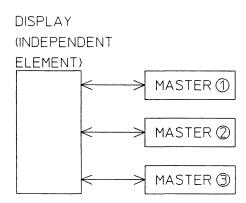
Mating Connector

HP 1251-0293: Amphenol 57-302040

HP Part Number	Cable Length
HP 10833A	1 m (3.3 ft)
HP 10833B	2 m (6.6 ft)
HP 10833C	4 m (13.2 ft)
HP 10833D	0.5 m (1.6 ft)

Master/Master Configuration

Introduction

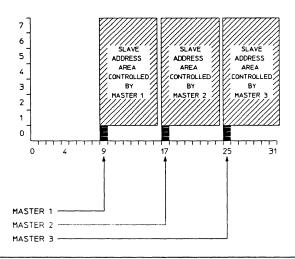

A Modular Measurement System (MMS) master/master configuration is where two or more modules are assigned as masters (have addresses on row 0).

In an MMS master/master setup each master element operates and communicates independently with the Display. Master/master information is covered under the following headings:

- Basic Master/Master Configuration
- Assigning Addresses (HP-MSIB)
- Cabling (HP-MSIB)
- HP 71600 Series in a Master/Master Configuration
- Assigning Addresses (HP-IB)
- Cabling (HP-IB)

Basic Master/Master Configuration

A typical master/master configuration is shown in the following diagram:



In a master/master configuration, the Display is connected to two or more masters. However, only one master can be in control of the display at a time. This master communicates with the slave(s) that it controls and the display. Masters do not communicate with each other.

Assigning Addresses (HP-MSIB)

Assigning HP-MSIB addresses in a master/master configuration is similar to the master/slave explained on page 6-6.

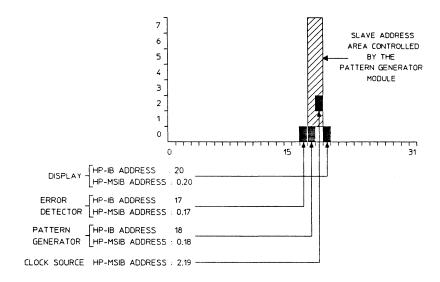
The addressing is based on a map or matrix of 8-rows and 32-columns. A typical map (for the 3-master system shown in the previous diagram) is shown below:

Note

Only one master at a time can communicate with the display.

The diagram shows that the addresses assigned to each master affects the number of slave addresses available to each master:

The address of Master 2 defines the number of slave addresses (address area) available to Master 1.


The address of Master 3 defines the number of slave addresses (address area) available to Master 2.

Cabling (HP-MSIB)

HP-MSIB cabling is similar to master/slave configuration, see page 6-8.

HP 71600 Series in a Master/Master Configuration

A typical address map for Error Performance Analyzers in a master/master configuration is shown below, both HP-MSIB and HP-IB addresses are shown.

Instrument Operation

Introduction

This appendix contains operating information which is specifically required for the Performance Tests in chapter 4. For a wider coverage of instrument operation see HP 71600 Series Operating Manual.

The operating tasks covered are listed below:

Set the Data Amplitude and Hi-Level

Set the Clock Output Level

Set up and Transmit a User Pattern

Set the Data Output Delay

Transmit an Alternate Word

To Set the Data Amplitude and Hi-Level

- 1. Press data o/p err-add.
- 2. Select DATA AMPLTD then use either the rotary knob or the numeric keys to set the value. If you use the rotary knob the units (mV or V) are automatically selected. If you use the numeric keys, the units must be selected from the keys to the right of the display (mV, V or CLEAR).
- 3. Select DATA HI-LEVL then use the rotary knob or numeric keys to set the value.

Note

The DATA HI-LEVL is the voltage set for the top of the data pulse.

To Set the Clock Output Level

- 1. Press trg o/p clk o/p.
- 2. Select CLOCK AMPLTD then use either the rotary knob or the numeric keys to set the value.

If you use the rotary knob the units (mV or V) are automatically selected. If you use the numeric keys, the units must be selected from the keys to the right of the display (mV, V or CLEAR).

To Set up and Transmit a User Pattern

Setting up a User Pattern

- 1. Press more 1 of 2 followed by edit usr-pat.
- 2. Select from PATTERN 1 to PATTERN 4
- 3. If you want to modify the current pattern, press set pat length then use the numeric keys to set the pattern to the desired length then press ENTER.
- 4. Use the 0 and 1 keys (as required) to enter the pattern. The rotary knob may be used to scan the pattern.
- 5. If you want to modify one of the stored PRBS patterns, press recall pattern then select the desired pattern.
- 6. Modify the pattern using the NO MODIFY, ZEROSUB or MARK DENSITY keys as required.
- 7. If you want to transmit the pattern in the previous step, proceed to the next step.

Transmitting a User Pattern

- 8. Press select pattern followed by user pattern, USER PATTN 1 to USER PATTN 4 will be displayed. The ACTIVE message is displayed next to the pattern currently selected.
- 9. Select the pattern you want to transmit (USER PATTN 1 to USER PATTN 4.

Note

You may edit a User Pattern while it is being transmitted (ACTIVE). If you do this, the transmitted pattern will change immediately the 0 or 1 keys are pressed in step 4.

To Set the Data Output Delay

- 1. Press data o/p err-add.
- 2. Select DAT O/P DELAY then use either the rotary knob or the numeric keys to set the value.

If you use the rotary knob the units (ns or ps) are automatically selected. If you use the numeric keys, the units must be selected from the keys to the right of the display (ns. ps or CLEAR).

To Transmit an Alternate word

1. Press select pattern followed by alt words. The alternate word is now being transmitted (Active).

To Edit the Alternate Word

- 2. Press alt words again.
- 3. Select ENTER WORD 0 then use numeric keys 0 and 1 to edit the sixteen bit pattern. Press ENTER to store the new pattern.
- 4. Select ENTER WORD 1 then use numeric keys 0 and 1 to edit the sixteen bit pattern. Press ENTER to store the new pattern.
- 5. Press EXIT.

Note

The Alternate Word transmitted (WORD 0 or WORD 1) depends on the state of the AUX INPUT on the rear panel of the Pattern Generator. If no input is connected, WORD 1 only is transmitted.

Index

A	E
Accessing Fuses	Electrostatic Discharge, 1-5
Clock Source, 2-7	Error Codes, 5-8
Display, 2-7	Error Detector Module Address Switches, 2-8
Mainframe, 2-7	Error Detector Module Removal, 2-21
Accessing the Clock Source Address Switches,	Error Indicators, 5-2
2-10	ESD, 1-5
Accessories (static-free), 1-6	_
Accessories Supplied, 1-2	F
Addressing	Fuses, 2-7
HP-MSIB, 2-14	
Address Selection (HP-MSIB), 6-5	Н
Address Switches	HP-IB, 7-1
Clock Source, 2-10	Assigning Addresses, 7-2
Display, 2-10	HP-IB Cabling, 7-2
Error Detector Module, 2-8	HP-IB Preset Addresses, 7-1
Pattern Generator, 2-9	HP-MSIB, 6-5
Assigning Addresses	Address Switches, 6-5
HP-MSIB (Master/Master), A-2	Assigning Master/Slave Addresses, 6-6
Assigning Addresses (HP-IB), 7-2 Assigning Master/Slave Addresses (HP-MSIB),	Cabling, 6-8
6-6	Changing Addresses), 6-5
0-0	Preset Addresses, 6-5
C	HP-MSIB Addressing, 2-14
Cabling	HP-MSIB Cables, 1-2, 2-14
HP-IB, 7-2	HP-MSIB Troubleshooting, 5-6
Cabling (cabling), 6-8	1
Cabling HP-MSIB (Master/Master), A-3	Installing on Error Detector Module 2.14
Changing HP-MSIB Addresses, 6-5	Installing an Error Detector Module, 2-14 Installing a Pattern Generator Module, 2-14
Clock Loss Troubleshooting, 5-16	Installing Modules, 2-14
Clock Source Address Switches, 2-10	instanting modules, 2 11
Clock Source Address Switches (access), 2-10	L
Clock Source Line Voltage Selector, 2-5	Line Fuses, 2-7
Communication Troubleshooting, 5-17	Line Voltages, 2-3
Configuring an Error Performance Analyzer,	LINE VOLTAGE SELECTOR
2-13	Clock Source, 2-5
Configuring a Pattern Generator, 2-13	Display, 2-4
CURRENT Troubleshooting, 5-5	Mainframe, 2-6
D	M
DATA LOSS Troubleshooting, 5-16	
Display Address Switches, 2-10	Mainframe Line Voltage Selector, 2-6
Display Line Voltage Selector, 2-4	Master/Master Configuration, A-1
Display Dille voltage Delector, 2-4	HP-MSIB Cabling, A-3
	Master/slave MMS, 6-2
	MMS, 6-2

Master/Master Configuration, A-1 MMS and HP 71600 Series, 6-4 MMS Error Messages, 5-8 MMS Terms, 6-3 Modular Measurement System (MMS), 6-2 Module Removal, 2-21

0

Operating Temperature, 2-2 Operational Verification, 4-4ff Options Available, 1-2

P

Packing Materials, 1-3
Pattern Generator Module Address Switches, 2-9
Pattern Generator Module Removal, 2-21
Power Cables, 1-2, 2-4
Preset Addresses
HP-IB, 7-1
HP-MSIB, 6-5
Preset HP-IB Addresses, 2-11
Preset HP-MSIB Addresses, 2-8

R

Rack Mounts, 2-11 Returning Modules to Hewlett-Packard, 1-3 RF Accessory Kit, 1-2

S

Selftest (at power-on), 2-20 Static-free Accessories, 1-6 Static-free Workstations, 1-5 Storage Temperature, 2-2 System Address Switches, 6-5 System Configuration Error Performance Analyzer, 2-13 Pattern Generator, 2-13

T

Troubleshooting
Clock Signal, 5-16
Communication Problem, 5-17
CURRENT, 5-5
DATA LOSS, 5-16
Error Indicators, 5-2
Error Messages, 5-8
HP-MSIB, 5-6
VOLT/TEMP, 5-4
Troubleshooting Entry Chart, 5-1

V

VOLT/TEMP Troubleshooting, 5-4

Arranged alphabetically by country

Please send directory corrections to: Test & Measurement Catalog Hewlett-Packard Company 3200 Hillview Avenue Palo Alto, CA 94304 Tei: (415) 857-4706

Fax: (415) 857-3880

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

ASIA

Hewlett-Packard Asia Ltd. 22/F Bond Centre, West Tower 89 Queensway, Central HONG KONG

G.P.O. Box 863, Hong Kong Tel: 5-8487777 Telex: 76793 HPA HX Cable: HPASIAL TD

CANADA

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 Fax: (416) 678-9421

EASTERN EUROPE

Hewlett-Packard Ges.m.b.h. Lieblgasse 1 P.O. Box 72 A-1222 **YIENNA**, Austria Tel: (222) 2500 Telex: 1 3 4425 HEPA A

NORTHERN EUROPE

Hewlett-Packard S.A. V. D. Hooplaan 241 P.O. Box 999 NL-118 LN 15 **AMSTELVEEN** The Netherlands Tel: 20 5479999 Telex: 18919 hpner

SOUTH EAST EUROPE

Hewlett-Packard S.A.
World Trade Center
110 Avenue Louis-Casai
1215 Cointrin, GENEVA, Switzerland
Tel: (022) 98 96 51
Telex: 27225 hpser
Mail Address:
P.O. Box
CH-1217 Meyrin 1
GENEVA

MIDDLE EAST AND CENTRAL AFRICA

Hewlett-Packard S.A. International Sales Branch Middle East/Africa 7, rue du Bois-du-Lan P.O. Box 364 CH-1217 Meyrin 1 GENEVA Switzerland Tel: (41/22) 780 7111 Fax: 783 7535

Switzerland

European Operations Hewlett-Packard S.A. 150, Route du Nant d'Avril 1217 Meyrin 2 GENEVA, Switzerland Tel: (41/22) 780 .8111 Fax: (41/22) 780 .8542

UNITED KINGDOM

Hewlett-Packard Ltd. Nine Mile Ride WOKINGHAM Berkshire, RG113LL Tel: 0344 773100 Fax: (44/344) 763526

UNITED STATES OF AMERICA

Customer Information Center (800) 752-0900 6:00 AM to 5:00 PM Pacific Time

EASTERN USA

Hewlett-Packard Co. 4 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 670-4300

MIDWESTERN USA

Hewlett-Packard Co. 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800

SOUTHERN USA

Hewlett-Packard Co. 2015 South Park Place ATLANTA, GA 30339 Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co. 5161 Lankershim Blvd. NORTH HOLLYWOOD, CA 91601 Tel: (818) 505-5600

OTHER INTERNATIONAL AREAS

Hewlett-Packard Co. Intercontinental Headquarters 3495 Deer Creek Road PALO ALTO, CA 94304 Tel: (415) 857-5027 Telex: 034-8300 Cable: HEWPACK

Hewlett-Packard Trading S.A. Bureau de Liaison/Bureau de Spport Villa des Lions 9, Hai Galloul **DZ-BORDJ EL BAHRI** Tel: 76 02 07 Fax: 281 0387

ANGOLA

Telectra Angola LDA Empresa Técnica de Equipamentos 16 rue Cons. Julio de Vilhema LUANDA

Tel: 35515,35516 Telex: 3134

ARGENTINA

Hewlett-Packard Argentina S.A. Montaneses 2140/50 1428 BUENOS AIRES Tel: (54/1) 781 4059 (54/1) 781-4090

Laboratorio Rodriguez Corswant S.R.L. Misiones, 1156 - 1876 Bernal, Oeste BUENOS AIRES Tel: 252-3958, 252-4991

Argentina Esanco S.R.L.

A/ASCO 2328 1416 **BUENOS AIRES** Tel: 541-58-1981, 541-59-2767 Telex: 22796 HEW PAC-AR

AUSTRALIA

Customer Information Centre Tel: (008) 033821

Adelaide, South Australia Office

Hewlett-Packard Australia Ltd. PARKSIDE, S.A. 5063 153 Greenhill Road ADELAIDE (Parkside) Sales Tel: (61-8) 272-5911 Fax: (61/8) 373-1398

Brisbane, Queensland Office

Hewlett-Packard Australia Ltd. 10 Payne Road THE GAP, Queensland 4061 Tel: 61-7-300-4133 Telex: 42133

Telex: 42133 Cable: HEWPARD Brisbane

Canberra, Australia Capital Territory Office

Hewlett-Packard Australia Ltd.

Thynne Street, Fern Hill Park BRUCE, A.C.T. 2617 P.O. Box 257, JAMISON, A.C.T. 2614 Tel: 61-62-51-6999 Telex: 62650 Cable: HEWPARD Canberra

Melbourne, Victoria Office

Hewlett-Packard Australia Ltd. 31-41 Joseph Street P.O. Box 221 BLACKBURN, Victoria 3130 Tel: (61/3) 895-2895 Fax: (61/3) 898-7831 Cable: HEWPARD Melbourne

Perth, Western Australia Office

Hewlett-Packard Australia Ltd. Herdsman Business Park Cnr. Hasler & Gould Strs. Osborne Park CLAREMONT, W.A. 6017 Tel: (61/9) 242 1414 Fax: (61/9) 242-1682 Cable: HEWPARD Perth

Sydney, New South Wales Office

Hewlett-Packard Australia Ltd. 17-23 Talavera Road P.O. Box 308 NORTH RYDE, N.S.W. 2113 Sydney, Australia Tel: (61/2) 888-4444 Fax: (61/2) 888-9072 Cable: HEWPARD Sydney

AUSTRIA

Hewlett-Packard GmbH Verkaufsbuero Graz Grottenhofstrasse 94 A-8052 **GRAZ** Tel: 43-316-291-5660 Telex: 312375

Hewlett-Packard GmbH Lieblgasse 1 P.O. Box 72 A-1222 **VIENNA** Tel: (43/222) 2500 Fax: (48/222) 2500 Ext 444

BAHRAIN

Modern Electronic Establishment Hewlett-Packard Division P.O. Box 22015 RIYADH 11495 SAUDI ARABIA Tel: (966/1) 4763030 Telex: 595 (0495) 202049

Wael Pharmacy P.O. Box 648 MANAMA Tol: 256123

Tel: 256123 Telex: 8550 WAEL BN

BELGIUM

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal 1200 **BRUSSELS** Tel: (32/2) 761.31.11 Fax: (32/2) 763.06.13

BENIN S.I.T.E.L.

Immeuble le General Av. General de Gaulle P.O. Box 161 ABIDJAN 01 Ivory Coast Tel: 32 12 27 Telex: 22149

BERMUDA

Applied Computer Technologies Atlantic House Building P.O. Box HM 2091 Par-La-Ville Road HAMILTON 5 Tel: 295-1616 Telex: 380 3589/ACT BA

BOLIVIA

Arrellano Ltda Av. 20 de Octubre #2125 Casilla 1383 LA PAZ Tel: 368541

Siser Ltda. (Sistemas de Importacion y Servicios Ltda.) Gabriel Gozalvez 221 Casilla 4084 LA PAZ

Tel: (591/2) 340962/ 363365/343245 Fax: 35-9268

BRAZIL

Hewlett-Packard do Brasil S.A. Praia de Botafago 228-A-614 6. AND.-CONJ. 601 Edificio Argentina - Ala A 22250 RIO DE JANEIRO, RJ Tel: (55/21) 552-6422 Telex: 21905 HPBR BR Cable: HEWPACK Rio de Janeiro

BRUNE!

Komputer Wisman Sdn Bhd G6, Chandrawaseh Cmplx. Jalan Tutong P.O. Box 1297, BANDAR SERI BEGAWAN NEGARA BRUNI DARUSSALAM Tei: 673-2-2000-70/26711

BURKINA FASSO

S.I.T.E.L. Immeuble le General Avenue General de Gaulle P.O. Box 161 ABIDJAN 01 Ivory Coast Tel: 32 12 27 Telex: 22149

CAMEROON

R.T.I. 175 Rue Blomet 75015 **PARIS** France Tel: (1) 45 31 0906 Telex: 203376 Fax: (1) 45 31 09 18

CANADA

Alberta

Hewlett-Packard (Canada) Ltd. 3030 3rd Avenue N.E. CALGARY, Alberta T2A 6T7 Tel: (1/403) 235-3100 Fax: (1/403) 272-2299

Hewlett-Packard (Canada) Ltd. 11120-178th Street EDMONTON, Alberta T5S 1P2 Tel: (1/403) 486-6666 Fax: (1/403) 489-8764

Arranged alphabetically by country (cont'd)

CANADA (Cont'd)

British Columbia

Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way RICHMOND,

British Columbia V6X 2W8 Tel: (1/604) 270-2277 Fax: (1/604) 270-0859

Manitoba

Hewlett-Packard (Canada) Ltd. 1825 Inkster Blvd. WINNIPEG, Manitoba R2X 1R3 Tel: (204) 694-2777

New Brunswick

Hewlett-Packard (Canada) Ltd. 814 Main Street MONCTON, New Brunswick E1C 1E6 Tel: (506) 855-2841

Nova Scotia

Hewlett-Packard (Canada) Ltd. 201 Brownlow Avenue DARTMOUTH, Nova Scotia B3B 1W2 Tel: (1/902) 469-7820 Fax: (1/902) 468-2817

Hewlett-Packard (Canada) Ltd. 475 Hood Rd., Unit #2 MARKHAM, L3R 8H1 Tel: (416) 479-1770

Ontario

Hewlett-Packard (Canada) Ltd. 552 Newbold Street LONDON, Ontario N6E 2S5 Tel: (1/519) 686-9181 Fax: (1/519) 686-9145

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (1/416) 678-9430 Fax: (1/416) 673-7253

Hewlett-Packard (Canada) Ltd. 2670 Queensview Dr. OTTAWA, Ontario K2B 8K1 Tel: (1/613) 820-6483 Fax: (1/613) 820-0377

Hewlett-Packard (Canada) Ltd. 3790 Victoria Park Ave. **WILLOWDALE**, Ontario M2H 3H7 Tel: (1/416) 499-2550

Quebec

Hewlett-Packard (Canada) Ltd. 17500 Trans Canada Highway South Service Road KIRKLAND, Quebec H9J 2X8 Tel: (1/514) 697-4232 Fax: (1/514) 697-6941

Saskatchewan

Hewlett-Packard (Canada) Ltd. #1, 2175 Airport Rd. SASKATOON, Saskatchewan S7L 7E1 Tel: (306) 242-3702

CHILE

Ricardo Borzutsky Avanzados Sistemas de Conocimientos S. A. Austria 2041 SANTIAGO

America del Sur Tel: (562) 223-5946/6148

CHINA, People's Republic of

China Hewlett-Packard Co., Ltd. 22/F Bond Centre, West Tower 89 Queensway, Central HONG KONG

Tel: (852/5) 8487777 Fax: (852/5) 868 4997

China Hewlett-Packard Co., Ltd. P.O. Box 9610, Beijing 38 Bei San Huan X1 Road Shuang Yu Shu, Hai Dian District **BEIJING**

Tel: 256-6888 Fax: 256-3207

China Hewlett-Packard Co., Ltd. 23/F Shanghai Union Building 100 Yan An Road **SHANG-HAI** Tel: 203-240

Fax: 202-149

COLOMBIA

Instrumentación
H. A. Langebaek & Kier S.A.
Carrerra 4A No. 52A-26
Apartado Aereo 6287
BOGOTA 1, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogota

CONGO

Sema-Metra 16-18 Rue Barbes 92126 Montrouge Cedex FRANCE Tel: (1) 657/300

Tel: (1) 657/300 Telex: 200601 Semetra Fax: (1) 46 56 96 53

COSTA RICA

Cientifica Costarricense S.A. Avenida 2, Calle 5 San Pedro de Montes de Oca Apartado 10159

SAN JOSÉ Tel: 9-011-506-243-820 Telex: 3032367 GALGUR CR

Continex S.A. Avenida 10C Apartado 746-1000 34-36 SAN JOSE Tel: (506) 33-0933 Telex: 2310 Continex CR Fax: 21-6905

O. Fischel R. Y. Cia. S.A. Apartados 434-10174 SAN JOSE Tel: 23-72-44

Tel: 23-72-44 Telex: 2379 Cable: OFIR

CYPRUS

Hellamco - M. Cotoyannis 2, Sikelianou St. & Kifissias Av. P.O. Box 65074 N. Psyhiko 15410 ATHENS

Greece

Tel: 647 79 426, 647 79 427 Telex: 224903

Telerexa Ltd. P.O. Box 1152 Valentine House 8 Stassandrou St.

NICOSIA Tel: 45 628, 62 698 Telex: 5845 tlrx cv

DEMSTAR Ltd. P.O. Box 2260 NICOSIA Cyprus Tel: 44 10 64 Telex: 3085

DENMARK

Fax: 46 46 35

Hewlett-Packard A/S Kongevejen 25 3460 BIRKEROD Tel: (45/42) 816640 Fax: (45/42) 815810

Hewlett-Packard A/S Rolighedsvej 32 DK-8240 **RISSKOV**, Aarhus Tel: 45-06-17-6000 Telex: 37409 hpas dk

DOMINICAN REPUBLIC

Microprog S.A.
Juan Tomás Mejía y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA DR (RCA)

ECUADOR

CYEDE Cia. Ltda. Avenida Eloy Alfaro 1749 y Belgica Casilla 6423 CCI **QUITO** Tel: 9-011-593-2-450975

Telex: 39322548 CYEDE ED

EGYPT

International Engineering Associates 6 El Gamea Street Agouza CAIRO

Tel: 71-21-681 348 0904 Telex: 93830 IEA UN Cable: INTEGASSO

EL SALVADOR

IPESA de El Salvador S.A. 29 Avenida Norte 1223 SAN SALVADOR Tel: 9-011-503-266-858 Telex: 301 20539 IPESA SAL

ETHIOPIA

R.T.I. 175 rue Blomet 75016 **PARIS** France Tel: (1) 45 31 09 06 Telex: 203376 Fax: (1) 45 31 09 18

FINLAND

Hewlett-Packard Finland Field Oy Niittylanpolku IO 00620 **HELSINKI** Tel: (90) 757-1011 Telex: 122022 Field SF

Hewlett-Packard Oy Piispankalliontie 17 02200 **ESPOO** Tel: (358/0) 88721 Fax: (358/0) 887 2277

Hewlett-Packard Oy Väinönkatu 9 C 40100 JYVÄSKYLÄ Tel: (358/41) 21 85 11

Hewlett-Packard Oy Valtatie 57 90500 **OULU** Tel: (358/81) 340 144

FRANCE

Hewlett-Packard France Z.I. Mercure B Rue Berthelot 13763 Les Milles Cedex AIX-EN-PROVENCE Tel: 33-42-59-41-02 Telex: 410770F

Hewlett-Packard France ZA Kergaradec Rue Fernand Forest 29239 **GOUEESNOU** (Brest) Tel: (98) 41-87-90

Hewlett-Packard France Chemin des Mouilles Boite Postale 162 69131 ECULLY Cedex (Lyon) Tel: (33) 72-29-32-93 Telex: 310617F

Z.I. Mercure B Rue Berthelot F-13763 LES MILLES Cédex Aix-en-Provence Tel: (33/42) 59-41-02 Telex: 410770 Fax: 594872

Hewlett-Packard France

Hewlett-Packard France
Parc Club des Tanneries
Batiment B4
4, Rue de la Faisanderie 67381/LINGOLSHEIM (Strasbourg)
Tel: (88) 76-15-00
Telex: 890141F

Hewlett-Packard France Parc d'activités Cadéra Quartier Jean-Mermoz Avenue du Président JF Kennedy 33700 **MÉRIGNAC** (Bordeaux) Tel: (33) 56-34-00-84 Telex: 550105F Hewlett-Packard France Miniparc-ZIRST Chemin du Vieux Chêne 38240 MEYLAN (Grenoble) Tel: (76) 90-38-40

Hewlett-Packard France Ru de l'Hôtellerie Le Petit Bel Air 44470 **CARQUEFOU** (Nantes) Tel: 40-30-38-38 Telex: 711085F

Hewlett-Packard France Parc Tertiaire Héliopolis Route de Micy

45380 La CHAPELLE ST MESMIN (Orléans)

Tel: 38-43-93-56 Telex: 783 497F

Hewlett-Packard France Zone Industrielle de Courtaboeuf 1, av. du Canada 91947 **LES ULIS** Cedex (Orsay)

91947 **LES ULIS** Cedex (Ors Tel: 69-82-60-60 Telex: 600048F

R.T.I. (Realisations Telematiques Internationales) 175, rue Blomet F-75015 PARIS Tel: (33/1) 45310906 Telex: 42/203376

Hewlett-Packard France Parc d'activités de la Poterie Rue Louis Kerautel-Botmel 35000 **RENNES** Tel: 99-51-42-44 Telex: 740912F

Hewlett-Packard France 45, rue des 3 Soeurs Centre d'Affaires Paris Nord II F-93420 Villepinte B.P. 60020 F-95971 ROISSY CHARLES DE GAULLE Cédex

Tel: (33/48) 91-68-00 Telex: 232366 Fax: 632183

Hewlett-Packard France

Telex: 770035F

Telex: 531639F

P.A.T. Lavatine 3, rue Jacques Monod BP 185 76136 MONT-ST-AIGNAN (Rouen) Tel: 35-59-19-20

Hewlett-Packard France Innoparc BP 167 - Voie n°7 31328 LABEGE Cedex (T ... Juse) Tel: 61-39-11-40

Hewlett-Packard France Les Cardoulines Batiment B2 Route des Dolines Parc d'activite de Valbonne Sophia Antipolis 06560 **VALBONNE** (Nice) Tei: 93-65-39-40

Hewlett-Packard France Parc d'activité des Prés 1, Rue Papin Cedex 59658 VILLENEUVE D'ASCQ Tel: 20-91-41-25

Tel: 20-91-41-2 Telex: 160124F

FRENCH WEST INDIES (Antilles)

R.T.I. 175, Rue Blomet 75015 PARIS FRANCE

Tel: (1) 45 31 09 06 Telex: 203376 Fax: (1) 45 31 09 18

GABON

R.T.I. Cameroon Distribution/Services B.P. 3899 DOULA, CAMEROON

(Please contact R.T.I. France.) Tel: (237) 423291

Tel: (237) 423291 Telex: 970/5385

75015 **PARIS**France
Tel: (1) 45 31 09 06

Telex: 203376 Fax: (1) 45 31 09 18

GERMAN FEDERAL REPUBLIC

Hewlett-Packard GmbH Vertriebzentrale Deutschland Hewlett-Packard-Strasse Postfach 1641 D-6380 BAD HOMBURG v.d.H Tel: (06172) 400-0 Telex: 410 844 hpbhg

Hewlett-Packard GmbH Geschäftsstelle Keithstrasse 2-4 D-1000 BERLIN 30 Tel: (030) 21 99 04-0 Telex: 018 3405 hpbin d

Hewlett-Packard GmbH Verbindungsstelle Bonn Friedrich-Ebert-Allee 26 5300 BONN Tel: (0228) 234001

Telex: 8869421

Hewlett-Packard GmbH Vertriebszentrun Südwest Schickardstrasse 2 D-7030 BÖBLINGEN Postfach 1427 Tel: (49/7031) 645 Fax: (49/7031) 645-429

Hewlett-Packard GmbH Zeneralbereich Mktg Herrenberger Strasse 130 D-7030 **BÖBLINGEN** Tel: (49/7031) 14-0 Fax: (49/7031) 14-2999

Hewlett-Packard GmbH Geschäftsstelle Schleefstr. 28a D-4600 DORTMUND-41 Tel: (0231) 45001

Tel: (0231) 45001 Telex: 822858 hepdod Hewlett-Packard gmbH

Reparaturzentrum Frankfurt Berner Strasse 117 6000 FRANKFURT/MAIN 60 Tel: (069) 500001-0 Telex: 413249 hpffm Hewlett-Packard GmbH Vertriebszentrum Nord Kapstadtring 5 D-2000 **HAMBURG** 60 Tel: 49-40-63-804-0 Telex: 021 63 032 hphh d

Hewlett-Packard GmbH Geschäftsstelle Heidering 37-39 D-3000 HANNOVER 61 Tel: (49/511) 5706-0 Fax: (49/511) 5706-126

Hewlett-Packard GmbH Geschäftsstelle Rosslauer Weg 2-4 D-6800 MANNHEIM Tel: 49-0621-70-05-0 Telex: 0462105 hpmhm

Hewlett-Packard GmbH Geschäftsstelle Messerschmittstrasse 7 D-7910 **NEU ULM** Tel: 49-0731-70-73-0 Telex: 0712816 HP ULM-D

Hewlett-Packard GmbH Geschäftsstelle Emmericher Strasse 13 D-8500 NÜRNBERG 10 Tel: (0911) 5205-0 Telex: 0623 860 hpnbg

Hewlett-Packard GmbH Vertriebszentrum Ratingen Berliner Strasse 111 D-4030 RATINGEN Postdach 31 12 Tol: (121) 20 484-0

Postfach 31 12
Tel: (02102) 494-0
Telex: 589 070 hprad
Hewlett-Packard GmbH

Vertriebszentrum Muchen Eschenstrasse 5 D-8028 **TAUFKIRCHEN** Tel: 49-89-61-2070

Telex: 0524985 hpmch

Hewlett-Packard GmbH Geschäftsstelle Ermlisallee 7517 WALDBRONN 2 Postfach 1251 Tel: (07243) 602-0 Telex: 782 838 hepk

GREAT BRITAIN See United Kingdom

GREECE

Hewlett-Packard Helias 32, Kiffissias Avenue 15125 Amaroussion ATHENS

Greece Tel: 6828811 Telex: 216588 hpat gr Fax: 6832978

GUATEMALA

IPESA DE GUATEMALA Avenida Reforma 3-48, Zona 9 GUATEMALA CITY Tel: 316627, 317853,66471/5 9-011-502-2-316627 Telex: 3055765 IPESA GU

GUINEA

R.T.I. 175, Rue Blomet 75015 **PARIS** France Tel: (1) 45 31 09 06 Telex: 203376 Fax: (1) 45 31 09 18

HONG KONG

Hewlett-Packard Asia, Ltd. 22/F, West Tower Bond Centre 89 Queensway Central HONG KONG Tel: (852/5) 848-7777 Fax: (852/15) 868-4997

Cable: HEWPACK HONG KONG

ICELAND

Hoefdabakka 9 112 **REYKJAVIK** Tel: 354-1-67-1000 Telex: 37409 Fax: 354-1-673031

Hewlett-Packard Iceland

INDIA

Computer products are sold through Blue Star Ltd. All computer repairs and maintenance service is done through Computer Maintenance Corp.

Near Sardar Patel Colony AHMEDABAD 380 014 Tel: 403531, 403532 Telex: 0121-234 Cable: BLUE FROST

Blue Star Ltd.

Blue Star Ltd.

B. D. Patel House

40/4 Lavelle Road BANGALORE 560 001 Tel: 57881, 867780 Telex: 0845-430 BSLBIN Cable: BLUESTAR

Blue Star Ltd. Sahas 414/2 Vir Savarkar Marg Prabhadevi BOMBAY 400 025 Tel: 422-6155

Telex: 011-71193 BSSS IN Cable: FROSTBLUE Blue Star Ltd.

Kalyan, 19 Vishwas Colony Alkapuri, **BARODA**, 390 005 Tel: 65235, 65236 Cable: BLUE STAR

Blue Star Ltd.

7 Hare Street
P.O. Box 506
CALCUTTA 700 001
Tel: 230131, 230132
Telex: 031-61120 BSNF IN
Cable: BLUESTAR

Blue Star Ltd.
13 Community Center
New Friends Colony
NEW DELHI 110 065
Tel: 682547
Telex: 031-2463
Cable: BLUEFROST

Blue Star Ltd. 2-2-47/1108 Bolarum Rd. SECUNDERABAD 500 003 Tel: 72057, 72058

Telex: 0155-459 Cable: BLUEFROST

Blue Star Ltd. T.C. 7/603 Poornima Maruthunkuzhi TRIVANDRUM 695 013 Tel: 65799, 65820 Telex: 0884-259

Hewlett-Packard India Meridian Commercial Complex 6th Floor

8 Windsor Place Janpath

Cable: BLUESTAR

NEW DELHI 110 001 Tel: 91-11384911 Telex: 31-4935 HPNDIN

INDONESIA

BERCA Indonesia P.T. P.O.Box 496/Jkt. Jl. Abdul Muis 62 JAKARTA Tel: 21-373009

Telex: 46748 BERSAL IA Cable: BERSAL JAKARTA BERCA Indonesia P.T.

P.O.Box 2497/Jkt Antara Bldg., 12th Floor Jl. Medan Merdeka Selatan 17 JAKARTA-PUSAT

Tel: 21-340417 Telex: 46748 BERSAL IA BERCA Indonesia P.T.

Jalan Kutai 24 SURABAYA Tel: 67118 Telex: 31146 BERSAL SB Cable: BERSAL-SURABAYA

IRAQ

Hewlett-Packard Trading S.A. Service Operation Al Mansoor City 609/10/7 BAGHDAD Tel: 551-49-73

Tel: 551-49-73 Telex: 212-455 HEPAIRAQ IK

IRELAND

Hewlett-Packard Ireland Ltd. Temple House, Temple Road Blackrock, Co. **DUBLIN** Tel: (353/1) 883399 Telex: 30439

Hewlett-Packard Ltd. 75 Belfact Rd, Carrickfergus Belfast BT38 8PH NORTHERN IRELAND Telex: 747626

ISRAEL

Eldan Electronic Instrument Ltd. P.O. Box 1270 JERUSALEM 91000 16, Ohaliav St. JERUSALEM 94467

Tel: 533 221, 553 242 Telex: 25231 AB/PAKRD IL Computation and Measurement Systems (CMS) Ltd. 11 Masad Street 67060 TEL-AVIV Tel: 388 388 Telex: 33569 Motil IL

ITALY

Hewlett-Packard Italiana Spa Via G. di Vittorio 10 20094 CORSICO (MI) Tel: 02/4408351 Fax: 02/4409964

Hewlett-Packard Italiana Spa Via Nuova Rivoltana 95 20090 LIMITO (MI) Tel: 02/75761 Fax: 02/7576230

Hewlett-Packard Italiana Spa Via Emilia 51/C 40011 ANZOLA DELL'EMILIA (BO)

Tel: 051/731061

Fax: 080/417891

Hewlett-Packard Italiana Spa Via M. Ricci 17 - Palombina Nuova 60100 **ANCONA** Tel: 071/883782

Hewlett-Packard Italiana Spa Traversa 99C Giulio Petroni 19 70124 **BARI** Tel: 080/410744

Hewlett-Packard Italiana Spa Via Principe Nicola 43G/C 95126 CATANIA Tel: 095/371087 Fax: 095/388569

Hewlett-Packard Italiana Spa Via G. Di Vittorio 9 20063 CERNUSCO S/N (MI) Tel: 02/923691 Fax: 02/9237746

Hewlett-Packard Italiana Spa Via Sacco e Vanzetti 1/A 50145 FIRENZE Tel: 055/318533 Fax: 055/373965

Hewlett-Packard Italiana Spa Viale Brigata Bisagno 2 16129 GENOVA Tel: 010/541141 Fax: 010/591733

Hewlett-Packard Italiana Spa Via Orazio 16 80122 **NAPOLI** Tel: 081/7611444 Fax: 081/680164

Hewlett-Packard Italiana Spa Via Pellizzo 15 35128 PADOVA Tel: 049/8070166 Fax: 049/773097

Hewlett-Packard Italiana Spa Via Del Tintoretto 200 00144 ROMA Tel: 06/54831 Fax: 06/5408710

Arranged alphabetically by country (cont'd)

ITALY (Cont'd)

Hewlett-Packard Italiana Spa Corso Svizzera 185 10149 **TORINO** Tel: 011/744044 Fax: 011/7710815

IVORY COAST

Ste Ivoirienne des Techniques de l'Informatique Immeuble C.N.A. - 5e etage Avenue General de Gaulle P.O. Box 161 ABIDJAN 01 Tel: 32 12 27

Tel: 32 12 27 Telex: 22149

Engineering Business Concept (E.B.C.) Angle Avenue J. Anoma et Bd. République 08 B.P. 323 **ABIDJAN** 08 Tel: 32 50 24 41 48 70

Tel: 32 50 24, 41 48 70 Fax: 35 37 90

JAPAN

Yokogawa-Hewlett-Packard Ltd. Nihon-Seimei Akita Chuo-Dori Bldg. 4-2-7 Naka-dori AKITA, 010 Tel: (81/188) 36-5021

Yokogawa-Hewlett-Packard Ltd. 152-1, Onna **ATSUGI**, Kanagawa, 243 Tel: (81/462) 25-0031 Fax: (81/462) 25-0064

Yokogawa-Hewlett-Packard Ltd. 3-1 Motochiba-Cho CHIBA, 280 Tel: (81/472) 25-7701 Fax: (81/472) 21-0382

Yokogawa-Hewlett-Packard Ltd. Dai-3 Hakata-Kaisei Bldg. 1-3-6 Hakata-eki Minami Hakata-Ku, **FUKUOKA** 812 Tel: (81/92) 472-8731

Yokogawa-Hewlett-Packard Ltd. Nihon-Dantai-Seimei-Koriyama Bidg. 21-10 Toramaru-Cho, Koriyama FUKUSHIMA, 963 Tel: (81/249) 39-7111

Yokogawa-Hewlett-Packard Ltd. Yasuda-Seimei Hiroshima Bldg. 6-11, Hon-dori, Naka-ku HIROSHIMA, 730 Tel: (81/82) 241-0611 Fax: (81/82) 241-0619

Yokogawa-Hewlett-Packard Ltd. Issei Bldg. 2-3-17 Takezono, Tsukuba IBARAGI, 305

Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Bldg. 1-4-73, Sanno-maru Mito, IBARAKI 310 Tel: (81/292) 25-7470

Yokogawa-Hewlett-Packard Ltd. Towa Building 2-2-3 Kaigan-dori, Chuo-ku **KOBE**, 650 Tel: (81/78) 392-4791

Fax: (81/78) 392-4839

Yokogawa-Hewlett-Packard Ltd. Kumagaya Asahi 82 Bldg. 3-4 Tsukuba

KUMAGAYA, Saitama 360 Tel: (81/485) 24-6563 Fax: (81/485) 24-9050

Yokogawa-Hewlett-Packard Ltd. Shin-Kyoto Center Bldg. 614 Higashi-Shiokoji-cho Karasuma-Nishi-Iru, Shiokoji-Dori Shimogyo-Ku, **KYOTO**, 600 Tel: (81/75) 343-0921 Fax: (81/75) 343-4356

Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Bldg. 1-4-73, Sanno-Maru MITO, Ibaraki 310 Tel: (81/292) 25-7470 Fax: (81/292) 31-6589

Yokogawa-Hewlett-Packard Ltd. Nagano-Tokyokaijyo Bldg. 1081, Minamiagata-Machi Nagano-Shi, NAGANO, 380 Tel: (81/262) 24-8012 Fax: (81/262) 24-8016

Yokogawa-Hewlett-Packard Ltd. Nagoya Kokusai Center Building 1-47-1, Nagono, Nakamura-ku NAGOYA, AICHI 450 Tel: (81/52) 571-5171

Yokogawa-Hewlett-Packard Ltd. Sai-Kyo-Ren Building 1-2 Dote-cho OOMIYA-SHI SAITAMA 330 Tel: (0486) 45-8031

Fax: (81/52) 565-0896

Yokogawa-Hewlett-Packard Ltd. Chuo Bldg., 5-4-20 Nishi-Nakajima 4-20 Nishinakajima, 5 Chome, Yodogawa-ku

OSAKA, 532 Tel: (81/6) 304-6021 Fax: (81/6) 304-0216

Yokogawa-Hewlett-Packard Ltd. 1-27-15, Yabe SAGAMIHARA Kanagawa, 229 Tel: (81/427) 59-1311

Yokogawa-Hewlett-Packard Ltd. Hamamtsu Motoshiro-Cho Daichi Seimei Bldg 219-21, Motoshiro-Cho Hamamatsu-shi

SHIZUOKA, 430 Tel: (81/534) 56-1771 Fax: (81/534) 552371

Yokogawa-Hewlett-Packard Ltd. Shinjuku Daiichi Seimei Bldg. Nishi Shinjuku 2-7-1, Shinjuku-ku,TOKYO 163 Tel: (81/3) 348-4611 Fax: (81/3) 348-7969

Yokogawa-Hewlett-Packard Ltd. 9-1, Takakura-cho Hachioji-shi, **TOKYO**, 192 Tel: 81-426-42-1231

Yokogawa-Hewlett-Packard Ltd. Tokyo-Nissam-Minato Bldg. 1-6-34 Konan, Minato-Ku **TOKYO** 108 Tel: (81/3) 458-5411 Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3-chome Suginami-ku **TOKYO** 168 Tel: (03) 331-6111 Telex: 232-2024 YHPTOK

Yokogawa Hokushin Electric Corp. (YEW) Shinjuku-NS Bldg. 10F 9-32 Nokacho 2 Chome Shinjuku-ku

TOKYO, 163 Tel: (03) 349-1859 Telex: .127584

Yokogawa-Hewlett-Packard Ltd. Toyoda-Tokyo-Kaijo Bldg. 1-179 Miyuki-Hon-Cho TOYODA 473

Tel: (81/565) 27-5611

Yokogawa-Hewlett-Packard Ltd. Chiyodaseimei-Utsunomiya Bldg. 2-3-1, Ohdori, UTSUNOMIYA, Tochigi-Shi 320

Tel: (81/286) 33-1153 Fax: (81/286) 33-1175

Yokogawa-Hewlett-Packard Ltd. No. 2 Yasuda Bldg. 2-32-12, Tsuruyo-cho Kanagawa-ku, YOKOHAMA 221 Tel: (81/45) 312-1252 Fax: (81/45) 311-8328

KENYA

ADCOM Ltd., Inc., Kenya P.O. Box 30070 NAIROBI Tel: 331955 Telex: 22639

KOREA

Samsung Hewlett-Packard Co. Ltd. Dongbang Yeoeuido Building 36-1 Yeoeui Do-Dong Youngdeungpo-Ku SEOUL, 150 Tel: (82/2) 784-4666, 784-2666 Fax: (82/2) 784-7084 Telex: 25166 SAMSAN K

KUWAIT

Al-Khaldiya Trading & Contracting P.O. Box 830 SAFAT 13009 Tel: 242 49 10, 241 17 26 Telex: 22481 AREEG KT Cable: VISCOUNT

LEBANON

Computer Information Systems S.A.L. Chammas Building P.O. Box 11-6274 DORA BEIRUT Telex: 93 11 13, 58 18 35 Telex: 42309 chacis le Fax: 58 18 34

LUXEMBOURG

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 **BRUSSELS** Tel: (32/2) 761-3111 Telex: 23-494 paloben bru

MADAGASCAR

175, Rue Blomet 75015 Paris FRANCE Tel: (1) 45 31 09 06 Tix: 203376 Fax: (1) 45 31 09 18

R.T.I.

MALAWI

Manhattan Court 61 Second Street P.O. Box 3458 HARARE Zimbabwe Tel: 739881/739885 Telex: 4122 Fax: 70 20 08

Systron (Private) Ltd.

MALAYSIA

Hewlett-Packard Sales (Malaysia) Sdn. Bhd. 9th Floor Chung Khiaw Bank Building 46, Jalan Raja Laut 50350 KUALA LUMPUR, MALAYSIA Tel: (60/3) 298-6555 Fax: (60/3) 291-5495

Protel Engineering P.O.Box 1917 Lot 6624, Section 64 23/4 Pending Road Kuching, SARAWAK Tel: 36299

Telex: 70904 PROMAL MA Cable: PROTELENG

MALTA

R.T.I. 175, Rue Blomet 75015 **PARIS** France Tel: (1) 45 31 09 06 Telex: 203376 Fax: (1) 45 31 09 18

MAURITANIA

R.T.I. 175, Rue Blomet 75015 **PARIS** France Tel: (1) 45 31 09 06 Tix: 203376 Fax: (1) 45 31 09 18

MAURITIUS

R.T.I. 175, Rue Blomet 75015 **PARIS** France Tel: (1) 45 31 09 06 Telex: 203376 Fax: (1) 45 31 09 18

MEXICO

Hewlett-Packard de Mexico, S.A. de C.V. Rio Nio No. 4049 Desp. 12 Fracc. Cordoba JUAREZ, Mexico Tel: 161-3-15-62 Hewlett-Packard de Mexico, S.A. de C.V. Condominio Kadereyta Circuito del Mezon No. 186 Desp. 6 Col. Del Prado - 76030 **QRO**, Mexico Tel: 463-6-02-71

Hewlett-Packard de Mexico, S.A. de C.V. Monti Morelos No. 299 Fraccionamiento Loma Bonita 45060 **GUADALAJARA**, Jalisco Tel: (52/36) 31 46 00 Telex: 0684 186 ECOME

Hewlett-Packard de Mexico, S.A. de C.V. Monte Pelvoux No. 111 Lomas de Chapultepec 11000 MEXICO, D.F. Tel: (52/5) 596 79 33 Fax: (52/5) 596 42 08 (Ext 3231)

Hewlett-Packard de Mexico, S.A. de C.V. Czda. del Valle 409 Ote. 4th Piso Colonia del Valle Municipio de Garcia 66220 NUEVO LEON Tel: 83-78-42-40

Telex: 382410 HPMY
Hewlett-Packard Co.
Latin America Region
Customer Support Center
7208 N.W. 31st St.
MIAMI, FL 33122
United States
Tel: (305) 599-0465
Telex: 441603 HPMIAMI
Fax: 599-0277

Hewlett-Packard de Mexico, S.A. de C.V. Blvd. Independencia No. 2000 Ote. Ote Zerpiso Co 1 Estrella 27010 TORREON, COA. Tel: (52/171) 8 22 01

MOROCCO

Sicotel
Complexe des Habous
Tour C, avenue des Far
CASABLANCA 01
Tel: 31 22 70
Telex: 27604

R.T.I. 175, Rue Blomet 75015 **PARIS** France Tel: (1) 45 31 09 06 Tix: 203376 Fax: (1) 45 31 09 18

Socofren Maroc

164, Boulevard D' Anfa CASABLANCA Tel: 36 08 84, 36 01 77 Telex: 23940

NETHERLANDS

Hewlett-Packard Nederland Startbaan 16 1187 XR **AMSTELVEEN** Tel: (31/20) 5476911 Telex: 13 216 HEPA NL Fax: (31/20) 471825 Hewlett-Packard Nederland B.V. Bongerd 2 NL 2900AA CAPELLE A/D IJSSEL

Tel: 31-20-51-6444 Telex: 21261 HEPAC NL

Hewlett-Packard Nederland B.V. Pastoor Petersstraat 134-136 P.O. Box 2342 NL 5600 CH EINDHOVEN Tel: 31-40-32-6911 Telex: 51484 hepae ni Fax: (31/40) 446546

NEW ZEALAND

Hewlett-Packard (N.Z.) Ltd. 5 Owens Road P.O. Box 26-189 Epsom, AUCKLAND Tel: (64/9) 605-651

Hewlett-Packard (N.Z.) Ltd. 186-190 Willis Street P.O. Box 9443 WELLINGTON

Tel: (64/4) 820-400 Fax: (64/4) 843-380

Fax: (64/9) 600-507

NIGER

S.I.T.E.L. Immeuble le General Avenue General de Gaulle PO Box 161 **ABIDJAN 01** Ivory Coast Tel: 32 12 27

Telex: 22149 **NIGERIA**

Management Information Systems Ltd. 3 Gerrard Road, Ikoyi LAGOS Tel: 68 08 87 Telex: 23582 Fax: 68 54 87

NORTHERN IRELAND See United Kingdom

NORWAY

Hewlett-Packard Norway A/S Oesterndalen 16-18 P.O. Box 34 N-1345 OESTERAAS Tel: (47/2) 24-6090 Telex: 76621 HPNAS N

Hewlett-Packard Norway A/S Boemergt. 42 Box 2470 N-5037 **SOLHEIMSVIK** Tel: (5/29) 10 72

OMAN

Suhail & Saud Bahwan P.O.Box 169 MUSCAT/SULTANATE OF OMAN Tel: 79 37 41 Telex: 3585 mb

Fax: 79 61 58 Imtac LLC

P.O. Box 9196 MINA AL FAHAL/SULTANATE OF OMAN

Tel: 70-77-27, 70-77-23 Telex: 3865 Tawoos On

PAKISTAN

Mushko & Company Ltd. House No. 16, Street No. 16 Sector F-6/3 ISI AMARAD

Tel: 824545 Telex: 54001 Muski Pk Cable: FEMUS Islamabad

Mushko & Company Ltd. Oosman Chambers Abdullah Haroon Road KARACHI 0302 Tel: 524131, 524132 Telex: 2894 MUSKO PK Cable: COOPERATOR Karachi

PANAMA

Electronico Balboa, S.A. Calle Samuel Lewis, Ed. Alfa Apartado 4929 PANAMA CITY Tel: 9-011-507-636613

Telex: 368 3483 ELECTRON PG

Cía Electro Médica S.A. (ERMED) Los Flamencos 145, Ofc. 301/2 San Isidro Casilla 1030 LIMA 1 Peru Tel: 9-011-511-4-414325, 41-3705

Telex: 39425257 PE PB SIS

PHILIPPINES

The Online Advanced Systems Corp. 2nd Floor, Electra House 115-117 Esteban Street P.O. Box 1510 Legaspi Village, Makati Metro MANILA Tel: 815-38-10 (up to 16) Telex: 63274 ONLINE PN

PORTUGAL

Mundinter Intercambio Mundial de Commercio Avenida Antonio 2761 LISBON

Tel: 53 21 31, 53 21 37 Telex: 16691

CPC Instrumentação Torre de Santo Antonio rue Gregorio Lopes, Lote Restelo

1400 LISBON Tel: 617343/44/45/46 Telex: 27432/26054 Fax: 617345

C.P.C.S.I. Rua de Costa Cabral 575 4200 **PORTO** Tel: 493122 Telex: 26054, 27432

PUERTO RICO

Fax: 48 87 21

Hewlett-Packard Puerto Rico Box 4048 Aguadilla, PR 00605 Tel: (809) 891-5235

Hewlett-Packard Puerto Rico 101 Munoz Rivera Avenue Esu. Calle Ochoa **HATO REY, 00918** Tel: (809) 754-7800

QATAR

Fax: 42 63 78

R.T.I.

Qatar Datamation Systems P.O. Box 350 **DOHA** Tel: 41 32 82 Tix: 4833

REUNION ISLAND

175, Rue Blomet 75015 PARIS France Tel: (33/1) 45310906 Telex: 42/203376

RWANDA

175, Rue Biomet 75015 **PARIS** France Tel: (33/1) 45310906 Telex: 42/203376 Fax: (1) 45 31 09 18

SAUDI ARABIA

Modern Electronics Establishment P.O. Box 281 Thuobah **AL-KHOBAR** 31952 Tel: 895-1760, 895-1764 Telex: 671 106 HPMEEK SJ Cable: ELECTA AL-KHOBAR

Modern Electronics Establishment P.O. Box 1228 Redec Plaza, 6th Floor JEDDAH Tel: 644 96 28

Telex: 4027 12 FARNAS SJ

Cable: ELECTA JEDDAH Modern Electronics Establishment P.O.Box 22015 **RIVADH** 11495

Tel: 4763030 Telex: 402040 MEERYD SJ

SCOTLAND See United Kingdom

SENEGAL

2SC 10, rue Tolbiac B.P. 3716 DAKAR R.P. (Please contact R.T.I. France.) Tel: (221) 222248 Telex: 906/671

175, Rue Blomet 75015 PARIS France Tel: 45310906 Telex: 203376 Fax: (1) 45 31 09 18

RTI

SINGAPORE

Hewlett-Packard Singapore Ltd. 1150 Depot Road SINGAPORE, 0410 Tel: (65) 273 7388 Fax: (65) 278 8990

SOUTH AFRICA

Hi Performance Systems (Pty.) Ltd. P.O. Box 120, Howard Place CAPE TOWN 7450 Tel: (27/21) 53-7954 Fax: (27/21) 53-5119

Hi Performance Systems (Pty.) Ltd. Private Bag Wendywood SANDTON 2144

Tel: (27/11) 802-5111 Fax: (27/11) 802-6332

SPAIN

Hewlett-Packard Española, S.A. Avda. Diagonal, 605 08028-BARCELONA Tel: (34/3) 401 91 00 Telex: 52603 hobee

Bilbao (Vizcaya) Sales Hewlett-Packard Español, S.A. Avda. Zugazarte, 8 48930 - Las Arenas - VIZCAYA

Hewlett-Packard Española, S.A. Crta. N-VI, Km. 16, 500 Las Rozas E-MADRID Tel: (34/1) 6370011

Telex: 23515 HPE Hewlett-Packard Española, S.A. Avda. S. Francisco Javier, S/N

Hewiett-Packard Española, S.A.

Planta 10. Edificio Sevilla 2 E-SEVILLA 5, SPAIN Tel: (34/54/64) 4454 Telex: 72933

Isabel La Catolica, 8 46004 VALENCIA Tel: (34/6) 351 59 44 Telex: 63435 Fax: (34/6) 351 59 44

Hewlett-Packard Española, S.A. Avda, de Zugazarte, 8 48930 - Las Arenas VIZCAYA

Tel: (34/4) 464 32 55 Telex: 33032

SUDAN

Mediterranean Engineering & Trading Co., Ltd. P.O. Box 1025 KHARTOUM Tel: (249) 41184 Telex: 24052

R.T.I. 175, Rue Blomet 75015 PARIS France Tel: (1) 45 31 09 06 Tix: 203376 Fax: (1) 45 31 09 18

SWEDEN

Hewlett-Packard Sverige AB Östra Tullgatan 3 20011 MALMÖ Box 6132 Tel: (46/40) 702 70 Telex: (854) 17886 (via Spånga office) Fax: (46/40) 97 74 18

Hewlett-Packard Sverige AB Elementvagen 16 S-7022 7 ÖREBRO Tel: (49/19) 10 48 80 Telex: (854) 17886 (via Spånga office)

Hewlett-Packard Sverige AB Skalholtsgatan 9, Kista P.O. Box 19 S-16493 KISTA Tel: 46/8/750-200 Telex: (854) 17886 Telefax: (08) 7527781 Hewlett-Packard Sverige AB

Box 266 Topasgatan 1A S-42123 VÄSTRA-FRÖLUNDA (Gothenburg) Tel: (031) 891000 Telex: (854) 17886 (via Spånga

SWITZERLAND

Hewlett-Packard (Schweiz) AG Clarastrasse 12 CH-4058 BASEL Tel: (41/61) 681 59 20 Fax: (41/61) 681 98 59

Hewlett-Packard (Schweiz) AG 7, rue du Bois-du-Lan Case postale 365-1366 CH-1217 MEYRIN 1 Tel: (41/22) 7804111 Telex:27333 HPAG CH

Hewlett-Packard (Schweiz) AG Allmend CH-8967 WIDEN Tel: (41/57) 321 111 Telex: 53933 HPAG CH Fax: (41/57) 321 475

SYRIA

Middle East Electronics P.O.Box 2308 Abu Rumaneh DAMASCUS Tel: 33 45 92 Telex: 411 771 Meesy

TAIWAN

Hewlett-Packard Taiwan Ltd. Taipei Office 8th Floor, Hewlett-Packard Building 337 Fu Hsing North Road TAIPEI Tel: (02) 712-0404

Telex: 24439 HEWPACK Cable: HEWPACK Taipei

Hewlett-Packard Taiwan Ltd. THM Office 2, Huan Nan Road CHUNG LI, Taoyuan Tel: (034) 929-666

Arranged alphabetically by country (cont'd)

TAIWAN (Cont'd)

Hewlett-Packard Taiwan Ltd. Taichung Office 5FL, 67, Sec. 3, Wen-Hsin Road. TAICHUNG Tel: (04) 254-1201

Hewlett-Packard Taiwan Ltd. Kaohsiung Office 11/F, 456, Chung Hsiao 1st Road

KAOHSIUNG Tel: (07) 2412318

TANZANIA

Adcom Ltd, Inc. Kenya P.O. Box 30070 NAIROBI Kenva

Tel: 33 19 55 Telex: 22639

THAILAND

Unimesa Co. Ltd. 2540 Sukumwit Avenue Banona

BANGKOK 10260 Tel: 662-398-6953 Telex: 84439 Simonco TH Cable: UNIMESA Bangkok

TOGO

S.I.T.E.L. immeuble le General Avenue General de Gaulle P.O. Box 161 **ABIDJAN** 01 Ivory Coast Tel: 32 12 27 Telex: 22149

Societe Africaine De Promotion Immeuble Sageb Rue d'Atakpame P.O. Box 4150 LOME Tel: 21-62-88 Telex: 5357

TRINIDAD & TOBAGO

Caribbean Telecoms Ltd. Corner McAllister Street & Eastern Main Road, Laventille P.O. Box 732

PORT-OF-SPAIN Tel: 624-4213

Telex: 22561 CARTEL WG Cable: CARTEL, PORT OF SPAIN

Computer and Controls Ltd. P.O. Box 51 1 Taylor Street PORT-OF-SPAIN Tel: (809) 622-7719/622-7985 Telex: 38722798 COMCON WG LOOGO AGENCY 1264

TUNISIA

Precision Electronique 5, rue de Chypre Mutuelleville 1002 TUNIS BELVEDERE Tunisia Tel: 78 50 37 Tlx: 13238

TURKEY

E.M.A. Mediha Eldem Sokak No. 41/6 Yenisehir

ANKARA

Tel: 131 4695, 131 9175 Telex: 46912n emsetr Cable: EMATRADE ANKARA

Hewlett-Packard Bilgisayar Ve Olcum Sistemleri A.S. (Headquarter) Mesrutiyet Mah. 19 Mayis Cad. Nova-Baran Plaza Kat: 11-12 SISLI / ISTANBUL

Tel: 175 29 70 Telex: 39150 Fax: 175 29 92

Hewlett-Packard Bilgisayar Ve Olcum Sistemleri A.S.

Paris Caddesi No 3 Diare 9 06670 ANKARA Tel: 125 83 13 Telex: 46180

Fax: 125 47 45 **UGANDA**

Adcom Ltd, Inc. Kenya P O Box 30070 NAIROBI Kenya Tel: 33 19 55 Telex: 22639

UNITED ARAB EMIRATES

Emitac Ltd P.O. Box 1641 SHARJAH Tel: 591181

Telex: 48710 EMITAC EM Cable: EMITAC SHARJAH

Emitac Ltd. P.O. Box 2711 **ABU DHABI** Tel: 820419-20 Cable: EMITACH ABUDHABI

Emitac Ltd P.O. Box 8391 DUBAL Tel: 377591

Emitac Ltd. P.O. Box 473 RAS AL KHAIMAH Tel: 28133, 21270

UNITED KINGDOM

ENGLAND

Hewlett-Packard Ltd. **Customer Information Centre** King St. Lane Winnersh, Wokingham GB-BERKSHIRE RG11 5AR Tel: (44/734) 784774 Telex: 847178 Fax: 777285

Hewlett-Packard Ltd. Miller House The Ring, BRACKNELL Berkshire RG12 1XN Tel: (44/344) 424-898

Fax: (44/344) 860015, Ext 56023

Hewlett-Packard Ltd. Customer Sales & Support Building 1, Filton Road Stoke Gifford BRISTOL, BS12 6QZ

Tel: (44/272) 236000 Hewlett-Packard Ltd. Oakfield House, Oakfield Grove

Clifton BRISTOL, Avon BS8 2BN

Hewlett-Packard Ltd. 9 Bridewell Place LONDON EC4V 6BS Tel: (44/583) 6565

Tel: 44-272-736 806

Telex: 444302

Hewlett-Packard Ltd. Heathside Park Rd Cheadle Heath, Stockport **GB-MANCHESTER SK3 ORB** Tel: (44/61) 428-0828

Fax: (44/583) 6565, Ext 4713

Telex: 668068 Fax: 4955009

Fax: 73684

Hewlett-Packard Ltd. Harman House No. 1 George St. Uxbridge GB-MIDDLESEX UB8 1YH Tel: (44/895) 72020 Telex: 893135

Hewlett-Packard Ltd. Pontefract Road NORMANTON. West Yorkshire WF6 1RN Tel: (44/924) 895-566 Fax: (44/924) 896-691 Telex: 557355

Hewlett-Packard Ltd. The Quadrangle 106-118 Station Road REDHILL, Surrey RH1 1PS Tel: 44-737-686-55 Telex: 947234

Hewlett-Packard Ltd. Avon House 435 Stratford Road Shirley, SOLIHULL, West Midlands B90 4BL

Tel: 44-21-745-8800 Telex: 339105

Hewlett-Packard Ltd. Heathside Park Road Cheadle Heath, Stockport Cheshire SK3 ORB Tel: (44/61) 428-0828

Fax: (44/61) 495-5009 Telex: 668068

Hewlett-Packard Ltd.

Harman House No. 1 George Street UXBRIDGE, Middlesex UB8 1YH Tel: (44/895) 72020

Fax: (44/895) 73684 Hewlett-Packard Ltd. King Street Lane

Winnersh, WOKINGHAM Berkshire RG11 5AR Tel: (44/734) 784774 Fax: (44/734) 777285 Ext 52285

NORTHERN IRELAND

Hewlett-Packard (Ireland) Ltd. Carrickfergus Industrial Centre 75 Belfast Road, Carrickfergus CO. ANTRIM BT38 8PM Tel: 09603 67333

Unit 5 Bridgewood House Newforge Lane Malone Road **BELFAST BT95 NW** Tel: (353/232) 664-851 Fax: (353/232) 665-619

SCOTLAND

Hewlett-Packard Ltd. 1/3 Springburn Place College Milton North EAST KILBRIDE, G74 5NU Tel: 035-52-49261 Fax: 03552-35929 Telex: 779615

Hewlett-Packard Ltd. **SOUTH QUEENSFERRY** West Lothian, EH30 9TG Tel: 031-331-1188 Fax: 031-331-7412

UNITED STATES

Hewlett-Packard Co. Customer Information Center Tel: (800) 752-0900 Hours: 6:00 AM to 5:00 PM Pacific Time

Alabama

Hewlett-Packard Co. 2100 Riverchase Center Building 100 - Suite 118 BIRMINGHAM, AL 35244 Tel: (205) 988-0547 Fax: (205) 988-5308

Hewlett-Packard Co. 620 Discovery Dr. HUNTSVILLE, AL 35806 Tel: (205) 830-2000 Fax: (205) 830-1427

Alaska

Hewlett-Packard Co. 4000 Old Seward Highway Suite 101 ANCHORAGE, AK 99503 Tel: (907) 563-8855 Fax: (907) 561-7409

Arizona

Hewlett-Packard Co. 8080 Pointe Parkway West PHOENIX, AZ 85044 Tel: (602) 273-8000 Fax: (602) 273-8080

Hewlett-Packard Co. 3400 East Britannia Dr. Bldg. C, Suite 124 **TUCSON, AZ 85706** Tel: (602) 573-7400 Fax: (602) 573-7429

Arkansas

Hewlett-Packard Co. 10816 Executive Center Dr Conway Bldg. Suite 116 LITTLE ROCK, AR 72211 Tel: (501) 225-7178 Fax: (501) 221-3614

California

Hewlett-Packard Co. 26701 W. Argoura Rd. CALABASAS, CA 91302 Tel: (818) 880-3400 Fax: (818) 880-3437

Hewlett-Packard Co 353 Lakeside Dr FOSTER CITY, CA 94404 Tel: (415) 378-8400 Fax: (415) 378-8405

Hewlett-Packard Co. 1907 North Gateway Blvd. FRESNO, CA 93727 Tel: (209) 252-9652 Fax: (209) 456-9302

Hewlett-Packard Co. 1421 S. Manhattan Av. FULLERTON, CA 92631 Tel: (714) 999-6700 Fax: (714) 778-3033

Hewlett-Packard Co. 7408 Hollister Ave. #A **GOLETA**, CA 93117 Tel: (805) 685-6100

Fax: (805) 685-6163

Hewlett-Packard Co. 9800 Muirlando Ave **IRVINE. CA 92718** Tel: (714) 472-3000

Fax: (714) 581-3607 (Direct Dial only)

Hewlett-Packard Co. 2525 Grand Avenue LONG BEACH, CA 90815 Tel: (213) 498-1111 Fax: (213) 494-1986

Hewlett-Packard Co. 5651 West Manchester Ave. LOS ANGELES, CA 90045 Tel: (213) 337-8000 Fax: (213) 337-8338

Hewlett-Packard Co. 321 E. Evelyn Ave. Blda. 330 **MOUNTAIN VIEW, CA 94039** Tel: (415) 694-2000 Fax: (415) 694-0600

Hewlett-Packard Co. 5161 Lankershim Blvd. NORTH HOLLYWOOD, CA 91601 Tel: (818) 505-5600 Fax: (818) 505-5875

Hewlett-Packard Co. 5725 W. Las Positas Blvd. PLEASANTON, CA 94566 Tel: (415) 460-0282 Fax: (415) 460-0713

Hewlett-Packard Co. 4244 So. Market Court, Suite A SACRAMENTO, CA 95834 Tel: (916) 929-7222 Fax: (916) 927-7152

Hewlett-Packard Co. 9606 Aero Drive **SAN DIEGO, CA 92123** Tel: (619) 279-3200 Fax: (619) 268-8487

Hewlett-Packard Co. 50 Fremont St. Suite 200 SAN FRANCISCO, CA 94105 Tel: (415) 882-6800 Fax: (415) 882-6805

Hewlett-Packard Co. 3003 Scott Boulevard SANTA CLARA, CA 95054 Tel: (408) 988-7000 Fax: (408) 988-7103

Hewlett-Packard Co. 5280 Valentine Rd. Suite 205 VENTURA, CA 93003 Tel: (805) 658-6898 Fax: (805) 650-0721

Colorado

Hewlett-Packard Co. 2945 Center Green Court South Suite A BOULDER, CO 80301 Tel: (303) 938-3065 Fax: (303) 938-3025

Hewlett-Packard Co. 24 Inverness Place, East ENGLEWOOD, CO 80112 Tel: (303) 649-5000 Fax: (303) 649-5787

Connecticut

Hewlett-Packard Co. 3 Parkland Dr. **DARIEN,** CT 06820 Tel: (203) 656-0040 Fax: (203) 656-5563

Hewlett-Packard Co. 115 Glastonbury Blvd GLASTONBURY, CT 06033 Tel: (203) 633-8100 Fax: (203) 659-6087

Florida

Hewlett-Packard Co. 5900 N. Andrews, Suite 100 FORT LAUDERDALE, FL 33309 Tel: (305) 938-9800 Fax: (305) 938-2293

Hewlett-Packard Co. 6800 South Point Parkway Suite 301 JACKSONVILLE, FL 32216

Tel: (904) 636-9955 Fax: (904) 636-9955

Hewlett-Packard Co. 255 East Drive, Suite B MELBOURNE, FL 32901 Tel: (407) 729-0704 Fax: (407) 723-4557

Hewlett-Packard Co. 6177 Lake Ellenor Drive ORLANDO, FL 32809 Tel: (407) 859-2900 Fax: (407) 826-9309

Hewlett-Packard Co. 4700 Bayou Blvd. Building 5 PENSACOLA, FL 32503 Tel: (904) 476-8422 Fax: (904) 476-4116

Hewlett-Packard Co. 5550 Idlewild, #150 TAMPA, FL 33634 Tel: (813) 884-3282 Fax: (813) 889-4445

Georgia

Hewlett-Packard Co. 2015 South Park Place ATLANTA, GA 30339 Tel: (404) 955-1500 Fax: (404) 980-7669

Hewlett-Packard Co. 3607 Parkway Lane Suite 300 NORCROSS, GA 30092 Tel: (404) 448-1894 Fax: (404) 246-5206

Hawaii

Hewlett-Packard Co. Pacific Tower 1001 Bishop St. Suite 2400 HONOLULU, HI 96813 Tel: (808) 526-1555 Fax: (808) 536-7873

Idaho

Hewlett-Packard Co. 11309 Chinden Blvd. **BOISE**, ID 83714 Tel: (208) 323-2700 Fax: (208) 323-2528

Illinois

Hewlett-Packard Co. 2205 E. Empire St. BLOOMINGTON, IL 61704 Tel: (309) 662-9411 Fax: (309) 662-0351

Hewlett-Packard Co. 525 W. Monroe St., Suite 1308 CHICAGO, IL 60606 Tel: (312) 930-0010 Fax: (312) 930-0986

Hewlett-Packard Co. 1200 East Diehl Road NAPERVILLE, IL 60566 Tel: (312) 357-8800 Fax: (312) 357-9896

Hewlett-Packard Co. 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800 Fax: (312) 259-5878

Indiana

Hewlett-Packard Co. 11911 N. Meridian St. CARMEL, IN 46032 Tel: (317) 844-4100 Fax: (317) 843-1291

Hewlett-Packard Co. 111 E. Ludwig Road Suite 108 FT. WAYNE, IN 46825 Tel: (219) 482-4283 Fax: (219) 482-9907

lowa

Hewlett-Packard Co. 4050 River Center Court CEDAR RAPIDS, IA 52402 Tel: (319) 393-0606 Fax: (319) 378-1024 Hewlett-Packard Co. 4201 Corporate Dr. WEST DES MOINES, IA 50265 Tel: (515) 224-1435 Fax: (515) 224-1870

Kansas

Hewlett-Packard Co. North Rock Business Park 3450 N. Rock Rd. Suite 300 WICHITA, KS 67226

Tel: (316) 636-4040 Fax: (316) 636-4504

Kentucky Hewlett-Packard Co.

305 N. Hurstbourne Lane, Suite 100 LOUISVILLE, KY 40222 Tel: (502) 426-0100 Fax: (502) 426-0322

Louisiana

Hewlett-Packard Co. 160 James Drive East ST. ROSE, LA 70087 Tel: (504) 467-4100 Fax: (504) 467-4100 x 291

Maryland

Hewlett-Packard Co. 3701 Koppers Street BALTIMORE, MD 21227 Tel: (301) 644-5800 Fax: (301) 362-7650

Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 948-6370 Fax: (301) 948-5986

Massachusetts

Hewlett-Packard Co. 1775 Minuteman Road ANDOVER, MA 01810 Tel: (508) 682-1500 Fax: (508) 794-2619

Hewlett-Packard Co. 29 Burlington Mall Rd. BURLINGTON, MA 01803-4514 Tel: (617) 270-7000 Fax: (617) 221-5240

Michigan

Hewlett-Packard Co. 3033 Orchard Vista S.E. GRAND RAPIDS, MI 49546 Tel: (616) 957-1970 Fax: (616) 956-9022

Hewlett-Packard Co. 39550 Orchard Hill Place Drive NOVI, MI 48050 Tel: (313) 349-9200 Fax: (313) 349-9240

Hewlett-Packard Co. 560 Kirts Rd. Suite 101 TROY, MI 48084 Tel: (313) 362-5180 Fax: (313) 362-3028

Minnesota

Hewlett-Packard Co. 2025 W. Larpenteur Ave. ST. PAUL, MN 55113 Tel: (612) 644-1100 Fax: (612) 641-9787

Mississippi

Hewlett-Packard Co. 800 Woodland Parkway, Suite 101 RIDGELAND, MS 39157 Tel: (601) 957-0730 Fax: (601) 957-2515

Missouri

Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON 63044 Tel: (314) 344-5100 Fax: (314) 344-5273

Hewlett-Packard Co. 6601 Winchester Ave. KANSAS CITY, MO 64133 Tel: (816) 737-0071 Fax: (816) 737-4690

Montana

Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MT 63044 Tel: (314) 344-5100 Fax: (314) 344-5273

Nebraska Hewlett-Packard

11626 Nicholas St. **OMAHA**, NE 68154 Tel: (402) 493-0300 Fax: (402) 493-4334

New Jersey

Hewlett-Packard Co. 120 W. Century Road PARAMUS, NJ 07653 Tel: (201) 599-5000 Fax: (201) 599-5382

Hewlett-Packard Co. 10 Sylvan Way PARSIPPANY, NJ 07054 Tel: (201) 682-4000 Fax: (201) 682-4031

Hewlett-Packard Co. 20 New England Av. PISCATAWAY, NJ 08854 Tel: (201) 562-6100 Fax: (201) 562-6246

New Mexico

Hewlett-Packard Co. 7801 Jefferson N.E. **ALBUQUERQUE**, NM 87109 Tel: (505) 823-6100 Fax: (505) 823-1243

Hewlett-Packard Co. 1362-C Trinity Dr. LOS ALAMOS, NM 87544 Tel: (505) 662-6700 Fax: (505) 662-4312

New York

Hewlett-Packard Co. 5 Computer Drive South **ALBANY**, NY 12205 Tel: (518) 458-1550 Fax: (518) 458-1550 x 0393 Hewlett-Packard Co. 130 John Muir Dr. AMHERST, NY 14228 Tel: (716) 689-3003 Fax: (716) 636-7034

Hewlett-Packard Co. 200 Cross Keys Office Park FAIRPORT, NY 14450 Tel: (716) 223-9950 Fax: (716) 223-6331

Hewlett-Packard Co. 7641 Henry Clay Blvd. **LIVERPOOL**, NY 13088 Tel: (315) 451-1820 Fax: (315) 451-1820 x 255

Hewlett-Packard Co. No. 1 Pennsylvania Plaza 55th Floor 34th Street & 7th Avenue MANHATTAN NY 10119 Tel: (212) 971-0800 Fax: (212) 330-6967

Hewlett-Packard Co. 2975 Westchester Ave **PURCHASE**, NY 10577 Tel: (914) 935-6300 Fax: (914) 935-6497

Hewlett-Packard Co. Executive Square Office Bldg. 66 Middlebush Rd. WAPPINGERS FALLS, NY 12590 Tel: (914) 298-9125 Fax: (914) 298-9154

Hewlett-Packard Co. 3 Crossways Park West WOODBURY, NY 11797 Tel: (516) 682-7800 Fax: (516) 682-7806 (2)

North Carolina

Hewlett-Packard Co. 305 Gregson Dr. CARY, NC 27511 Tel: (919) 467-6600 Fax: (919) 460-2296 (919) 460-2297

Hewlett-Packard Co. P.O. Box 240318 CHARLOTTE, NC 28224 Tel: (704) 527-8780 Fax: (704) 523-7857

Hewlett-Packard Co. 7029 Albert Pick Rd. #100 GREENSBORO, NC 27409 Tel: (919) 665-1800 Fax: (919) 668-1797 Mailing Address PO Box 26500 Greensboro, NC 27426

Ohio

Hewlett-Packard Co. 2717 S. Arlington Rd. **AKRON** 44312 Tel: (216) 644-2270 Fax: (216) 644-7415

Hewlett-Packard Co. 4501 Erskine Road CINCINNATI, OH 45242 Tel: (513) 891-9870 Fax: (513) 891-0033

Arranged alphabetically by country (cont'd)

UNITED STATES (Cont'd)

Hewlett-Packard Co. Moutroffe West Ave. COPLEY, OH 44321 Tel: (216) 666-7711 Fax: (216) 666-6054

Hewlett-Packard Co. 7887 Washington Village Dr. **DAYTON**, OH 45459 Tel: (513) 433-2223 Fax: (513) 433-8633

Hewlett-Packard Co. 9080 Springboro Pike MIAMISBURG 45342 Tel: (513) 433-2223 Fax: (513) 433-3633

Hewlett-Packard Co. 15885 Sprague Road STRONGSVILLE, OH 44136 Tel: (216) 243-7300 Fax: (216) 234-7230

Hewlett-Packard Co. One Maritime Plaza, 5th Floor 720 Water Street **TOLEDO**, OH 43604 Tel: (419) 242-2200 Fax: (419) 241-7655

Hewlett-Packard Co. 675 Brooksedge Blvd. WESTERVILLE, OH 43081 Tel: (614) 891-3344 Fax: (614) 891-1476

Oklahoma Hewlett-Packard Co.

3525 N.W. 56th St. Suite C-100 OKLAHOMA CITY, OK 73112 Tel: (405) 946-9499

Fax: (405) 942-2127 Hewlett-Packard Co. 6655 South Lewis.

Suite 105 TULSA, OK 74136 Tel: (918) 481-6700 Fax: (918) 481-2250

Oregon

Hewlett-Packard Co. 9255 S. W. Pioneer Court WILSONVILLE, OR 97070 Tel: (503) 682-8000 Fax: (503) 682-8155

Pennsylvania

Hewlett-Packard Co. Heatherwood Industrial Park 50 Dorchester Rd. P.O. Box 6080 HARRISBURG, PA 17112 Tel: (717) 657-5900 Fax: (717) 657-5946 Hewlett-Packard Co. 111 Zeta Drive PITTSBURGH, PA 15238 Tel: (412) 782-0400 Fax: (412) 963-1300

Hewlett-Packard Co. 2750 Monroe Boulevard VALLEY FORGE, PA 19482 Tel: (215) 666-9000 Fax: (215) 666-2034

South Carolina

Hewlett-Packard Co. Brookside Park, Suite 122 1 Harbison Way COLUMBIA, SC 29212 Tel: (803) 732-0400 Fax: (803) 732-4567

Hewlett-Packard Co. 545 N. Pleasantburg Dr. Suite 100 GREENVILLE, SC 29607 Tel: (803) 232-8002 Fax: (803) 232-8739

Tennessee

Hewlett-Packard Co. One Energy Center Suite 200 Pellissippi Pkwy. KNOXVILLE, TN 37932 Tel: (615) 966-4747 Fax: (615) 966-8147

Hewlett-Packard Co. 889 Ridge Lake Blvd., Suite 100 MEMPHIS, TN 38119 Tel: (901) 763-4747 Fax: (901) 762-9723

Hewlett-Packard Co. 44 Vantage Way, Suite 160 NASHVILLE, TN 37228 Tel: (615) 255-1271 Fax: (615) 726-2310

Texas

Hewlett-Packard Co. 9050 Capital of Texas Highway, North #290 AUSTIN, TX 78759

Tel: (512) 346-3855 Fax: (512) 338-7201 Mailing Address PO Box 9431 Austin, TX 78766-9430

Hewlett-Packard Co. 5700 Cromo Dr EL PASO, TX 79912 Tel: (915) 833-4400 Fax: (915) 581-8097 Hewlett-Packard Co. 10535 Harwin Drive HOUSTON, TX 77036 Tel: (713) 776-6400 Fax: (713) 776-6495

Hewlett-Packard Co. 3301 West Royal Lane IRVING, TX 75063 Tel: (214) 869-3377 Fax: (214) 830-8951

Hewlett-Packard Co. 109 E. Toronto, Suite 100 McALLEN, TX 78503 Tel: (512) 630-3030 Fax: (512) 630-1355

Hewlett-Packard Co. 930 E. Campbell Rd. RICHARDSON, TX 75081 Tel: (214) 231-6101 Fax: (214) 699-4337

Hewlett-Packard Co. 14100 San Pedro Ave., Suite 100 SAN ANTONIO, TX 78232 Tel: (512) 494-9336 Fax: (512) 491-1299

Utah

Hewlett-Packard Co. 3530 W. 2100 South **SALT LAKE CITY**, UT 84119 Tel: (801) 974-1700 Fax: (801) 974-1780

Virginia

Hewlett-Packard Co. 840 Greenbrier Circle Suite 101 CHESAPEAKE, VA 23320 Tel: (804) 424-7105 Fax: (804) 424-1494

Hewlett-Packard Co. 4401 Water Front Dr. GLEN ALLEN, VA 23060 Tel: (804) 747-7750 Fax: (804) 965-9297

Hewlett-Packard Co. 2800 Electric Road Suite 100 ROANOKE, VA 24018 Tel: (703) 774-3444 Fax: (703) 989-8049

Washington Hewlett-Packard Co.

15815 S.E. 37th Street BELLEVUE, WA 98006 Tel: (206) 643-4000 Fax: (206) 643-8748 Hewlett-Packard Co. N. 1225 Argonne Rd SPOKANE, WA 99212-2657 Tel: (509) 922-7000 Fax: (509) 927-4236

West Virginia

Hewlett-Packard Co. 501 56th Street CHARLESTON, WV 25304 Tel: (304) 925-0492 Fax: (304) 925-1910

Wisconsin

Hewlett-Packard Co. 275 N. Corporate Dr. BROOKFIELD, WI 53005 Tel: (414) 792-8800 Fax: (414) 792-0218

URUGUAY

Pablo Ferrando S.A.C. e I. Avenida Italia 2877 Casilla de Correo 370 MONTEVIDEO Tel: 59-82-802-586

Telex: 398802586 Olympia de Uruguay S.A. Maquines de Oficina

Avda. del Libertador 1997 Casilla de Correos 6644 MONTEVIDEO Tel: 91-1809, 98-3807

Telex: 6342 OROU UY VENEZUELA

Analytical Supplies, CA Quinta #103 Impermes Av El Centro Los Chorros Apartado 75472 CARACAS

Tel: 364904, 2394047 Telex: 26274 CABIC

Hewlett-Packard de Venezuela C.A. Residencias Tia Betty Local 1 Avenida 3 Y con Calle 75 MARACAIBO, Estado Zulia Apartado 2646 Tel: 586175669 Telex: 62464 HPMAR

YUGOSLAVIA

Do Hermes General Zdanova 4 YU-11000 BEOGRAD Tel: (011) 342 641 Telex: 11433

Do Hermes Celovska 73 YU-61000 LJUBLJANA Tel: (061) 553 170 Telex: 31583

ZAIRE

C.I.E.
Computer & Industrial Engineering
25 Ave. de la Justice Gombe
Boite Postale 10976
KINSHASA
Tel: 32 063, 32 633, 28 251

Tel: 32 063, 32 633, 28 251 Telex: 21552 Fax: 22 850

ZAMBIA

R.J. Tilbury (Zambia) Ltd. P.O. Box 32792 LUSAKA Tel: 21 55 80 Telex: 40128

ZIMBABWE

Field Consolidated (Private) Ltd. Systron Division Manhattan Court 61 Second Street P.O. Box 3458 HARARE Tel: 73 98 81

Telex: 26241 Fax: 70 20 08

Please send directory corrections to: Test & Measurement Catalog

Hewlett-Packard Company 3200 Hillview Avenue Palo Alto, CA 94304 Tel: (415) 857-4706 Fax: (415) 857-3880

September 1989

,		
_		

71600-90001

Printed in U.K